BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 18440248)

  • 21. Phosphorylation state of CREB in the rat hippocampus: a molecular switch between spatial novelty and spatial familiarity?
    Moncada D; Viola H
    Neurobiol Learn Mem; 2006 Jul; 86(1):9-18. PubMed ID: 16426870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spaced initial stimulus familiarization enhances novelty preference in Long-Evans rats.
    Anderson MJ; Jablonski SA; Klimas DB
    Behav Processes; 2008 Jul; 78(3):481-6. PubMed ID: 18358637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition or performance of tests of allocentric spatial memory.
    Machin P; Vann SD; Muir JL; Aggleton JP
    Behav Neurosci; 2002 Apr; 116(2):232-40. PubMed ID: 11996309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Damage to the retrosplenial cortex produces specific impairments in spatial working memory.
    Keene CS; Bucci DJ
    Neurobiol Learn Mem; 2009 May; 91(4):408-14. PubMed ID: 19026755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.
    Ramos JM; Vaquero JM
    Physiol Behav; 2005 Sep; 86(1-2):118-27. PubMed ID: 16098545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object exploration and reactions to spatial and nonspatial changes in dentate gyrus lesioned rats.
    Beselia G; Maglakelidze G; Chkhikvishvili N; Burjanadze M; Dashniani M
    Georgian Med News; 2010 Jan; (178):61-5. PubMed ID: 20157210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporary inactivation of the supramammillary area impairs spatial working memory and spatial reference memory retrieval.
    Aranda L; Begega A; Sánchez-López J; Aguirre JA; Arias JL; Santín LJ
    Physiol Behav; 2008 Jun; 94(3):322-30. PubMed ID: 18346765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neonatal tactile stimulation enhances spatial working memory, prefrontal long-term potentiation, and D1 receptor activation in adult rats.
    Zhang M; Cai JX
    Neurobiol Learn Mem; 2008 May; 89(4):397-406. PubMed ID: 18077190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired long-term habituation is dissociated from increased locomotor activity after sensorimotor cortex compression.
    Moreira T; Cebers G; Salehi M; Wägner A; Liljequist S
    Behav Brain Res; 2006 Feb; 167(1):9-22. PubMed ID: 16337698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns of retrograde amnesia for recent and remote incidental spatial learning in rats.
    Gaskin S; Tardif M; Mumby DG
    Hippocampus; 2009 Dec; 19(12):1212-21. PubMed ID: 19294648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Object recognition memory is conserved in Ts1Cje, a mouse model of Down syndrome.
    Fernandez F; Garner CC
    Neurosci Lett; 2007 Jun; 421(2):137-41. PubMed ID: 17566652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of gender on working and spatial memory in the novel object recognition task in the rat.
    Sutcliffe JS; Marshall KM; Neill JC
    Behav Brain Res; 2007 Feb; 177(1):117-25. PubMed ID: 17123641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The avian hippocampus and short-term memory for spatial and non-spatial information.
    Good M; Macphail EM
    Q J Exp Psychol B; 1994 Aug; 47(3):293-317. PubMed ID: 7972890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty.
    Hunsaker MR; Rosenberg JS; Kesner RP
    Hippocampus; 2008; 18(10):1064-73. PubMed ID: 18651615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of prolonged iron overload and low frequency electromagnetic exposure on spatial learning and memory in the young rat.
    Maaroufi K; Had-Aissouni L; Melon C; Sakly M; Abdelmelek H; Poucet B; Save E
    Neurobiol Learn Mem; 2009 Oct; 92(3):345-55. PubMed ID: 19394433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation of the effect of spatial behaviors on the phosphorylation of cAMP-response element binding protein (CREB) within the nucleus accumbens.
    Alvarez-Jaimes L; Centeno-González M; Feliciano-Rivera M; Maldonado-Vlaar CS
    Neuroscience; 2005; 130(4):833-42. PubMed ID: 15652982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment.
    Lenck-Santini PP; Rivard B; Muller RU; Poucet B
    Hippocampus; 2005; 15(3):356-69. PubMed ID: 15602750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do rats really express neophobia towards novel objects? Experimental evidence from exposure to novelty and to an object recognition task in an open space and an enclosed space.
    Ennaceur A; Michalikova S; Chazot PL
    Behav Brain Res; 2009 Feb; 197(2):417-34. PubMed ID: 18992282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incidental (unreinforced) and reinforced spatial learning in rats with ventral and dorsal lesions of the hippocampus.
    Gaskin S; Gamliel A; Tardif M; Cole E; Mumby DG
    Behav Brain Res; 2009 Aug; 202(1):64-70. PubMed ID: 19447282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats.
    Elliott BM; Grunberg NE
    Behav Brain Res; 2005 Dec; 165(2):187-96. PubMed ID: 16112757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.