These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 18440267)

  • 21. Suberin--a biopolyester forming apoplastic plant interfaces.
    Franke R; Schreiber L
    Curr Opin Plant Biol; 2007 Jun; 10(3):252-9. PubMed ID: 17434790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types.
    Kosma DK; Murmu J; Razeq FM; Santos P; Bourgault R; Molina I; Rowland O
    Plant J; 2014 Oct; 80(2):216-29. PubMed ID: 25060192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol.
    Yang W; Pollard M; Li-Beisson Y; Beisson F; Feig M; Ohlrogge J
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):12040-5. PubMed ID: 20551224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precursor biosynthesis regulation of lignin, suberin and cutin.
    Xin A; Herburger K
    Protoplasma; 2021 Nov; 258(6):1171-1178. PubMed ID: 34120228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant sn-Glycerol-3-Phosphate Acyltransferases: Biocatalysts Involved in the Biosynthesis of Intracellular and Extracellular Lipids.
    Jayawardhane KN; Singer SD; Weselake RJ; Chen G
    Lipids; 2018 May; 53(5):469-480. PubMed ID: 29989678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated Metabolomic and Transcriptomic Analysis to Characterize Cutin Biosynthesis between Low- and High-Cutin Genotypes of
    Natarajan P; Akinmoju TA; Nimmakayala P; Lopez-Ortiz C; Garcia-Lozano M; Thompson BJ; Stommel J; Reddy UK
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Extracellular Cell Wall Lipids: Wax, Cutin, and Suberin in Leaves, Roots, Fruits, and Seeds.
    Baales J; Zeisler-Diehl VV; Schreiber L
    Methods Mol Biol; 2021; 2295():275-293. PubMed ID: 34047982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biopolyester membranes of plants: cutin and suberin.
    Kolattukudy PE
    Science; 1980 May; 208(4447):990-1000. PubMed ID: 17779010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds.
    Philippe G; Sørensen I; Jiao C; Sun X; Fei Z; Domozych DS; Rose JK
    Curr Opin Plant Biol; 2020 Jun; 55():11-20. PubMed ID: 32203682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The making of suberin.
    Serra O; Geldner N
    New Phytol; 2022 Aug; 235(3):848-866. PubMed ID: 35510799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suberin research in the genomics era--new interest for an old polymer.
    Ranathunge K; Schreiber L; Franke R
    Plant Sci; 2011 Mar; 180(3):399-413. PubMed ID: 21421386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bundle sheath suberization in grass leaves: multiple barriers to characterization.
    Mertz RA; Brutnell TP
    J Exp Bot; 2014 Jul; 65(13):3371-80. PubMed ID: 24659485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The identification of cutin synthase: formation of the plant polyester cutin.
    Yeats TH; Martin LB; Viart HM; Isaacson T; He Y; Zhao L; Matas AJ; Buda GJ; Domozych DS; Clausen MH; Rose JK
    Nat Chem Biol; 2012 Jul; 8(7):609-11. PubMed ID: 22610035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids.
    Razeq FM; Kosma DK; França D; Rowland O; Molina I
    Phytochemistry; 2021 Apr; 184():112665. PubMed ID: 33524853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier.
    Vishwanath SJ; Delude C; Domergue F; Rowland O
    Plant Cell Rep; 2015 Apr; 34(4):573-86. PubMed ID: 25504271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.
    Lü S; Song T; Kosma DK; Parsons EP; Rowland O; Jenks MA
    Plant J; 2009 Aug; 59(4):553-64. PubMed ID: 19392700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling.
    Welti R; Wang X
    Curr Opin Plant Biol; 2004 Jun; 7(3):337-44. PubMed ID: 15134756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly.
    Douliez JP; Barrault J; Jerome F; Heredia A; Navailles L; Nallet F
    Biomacromolecules; 2005; 6(1):30-4. PubMed ID: 15638500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of plant natural product pathways.
    Dixon RA
    Curr Opin Plant Biol; 2005 Jun; 8(3):329-36. PubMed ID: 15860431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.
    Heredia A
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):1-7. PubMed ID: 12595066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.