BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18440360)

  • 1. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: optimisation and application in alkaline phosphatase-based assays.
    Lamas-Ardisana PJ; Queipo P; Fanjul-Bolado P; Costa-García A
    Anal Chim Acta; 2008 May; 615(1):30-8. PubMed ID: 18440360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools.
    Fanjul-Bolado P; Queipo P; Lamas-Ardisana PJ; Costa-García A
    Talanta; 2007 Dec; 74(3):427-33. PubMed ID: 18371659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immuno-column for on-line quantification of human serum IgG antibodies to Helicobacter pylori in human serum samples.
    Molina L; Messina GA; Stege PW; Salinas E; Raba J
    Talanta; 2008 Sep; 76(5):1077-82. PubMed ID: 18761158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode.
    Kachoosangi RT; Wildgoose GG; Compton RG
    Anal Chim Acta; 2008 Jun; 618(1):54-60. PubMed ID: 18501245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes.
    Fanjul-Bolado P; Lamas-Ardisana PJ; Hernández-Santos D; Costa-García A
    Anal Chim Acta; 2009 Apr; 638(2):133-8. PubMed ID: 19327451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays.
    Fanjul-Bolado P; González-García MB; Costa-García A
    Anal Bioanal Chem; 2006 Aug; 385(7):1202-8. PubMed ID: 16532307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of alkaline phosphatase at nanomolar concentration within 70 s using a disposable microelectrochemical transistor.
    Astier Y; Bartlett PN
    Bioelectrochemistry; 2004 Aug; 64(1):53-9. PubMed ID: 15219247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic genosensor on streptavidin-modified screen-printed carbon electrodes.
    Hernández-Santos D; Díaz-González M; González-García MB; Costa-García A
    Anal Chem; 2004 Dec; 76(23):6887-93. PubMed ID: 15571337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.
    Hegde RN; Hosamani RR; Nandibewoor ST
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):259-65. PubMed ID: 19446444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing.
    Preechaworapun A; Dai Z; Xiang Y; Chailapakul O; Wang J
    Talanta; 2008 Jul; 76(2):424-31. PubMed ID: 18585301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection of celecoxib at a polyaniline grafted multiwall carbon nanotubes modified electrode.
    Manesh KM; Santhosh P; Komathi S; Kim NH; Park JW; Gopalan AI; Lee KP
    Anal Chim Acta; 2008 Sep; 626(1):1-9. PubMed ID: 18761115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate.
    Salimi A; Kavosi B; Babaei A; Hallaj R
    Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyaniline-carbon nanotube composite film for cholesterol biosensor.
    Dhand C; Arya SK; Datta M; Malhotra BD
    Anal Biochem; 2008 Dec; 383(2):194-9. PubMed ID: 18817744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film.
    Nassef HM; Civit L; Fragoso A; O'Sullivan CK
    Analyst; 2008 Dec; 133(12):1736-41. PubMed ID: 19082077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous detection of free and total prostate specific antigen on a screen-printed electrochemical dual sensor.
    Escamilla-Gómez V; Hernández-Santos D; González-García MB; Pingarrón-Carrazón JM; Costa-García A
    Biosens Bioelectron; 2009 Apr; 24(8):2678-83. PubMed ID: 19261459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes.
    Rohrbach F; Karadeniz H; Erdem A; Famulok M; Mayer G
    Anal Biochem; 2012 Feb; 421(2):454-9. PubMed ID: 22200651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube/polysulfone screen-printed electrochemical immunosensor.
    Sánchez S; Pumera M; Fàbregas E
    Biosens Bioelectron; 2007 Oct; 23(3):332-40. PubMed ID: 17560102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors.
    Carrara S; Shumyantseva VV; Archakov AI; Samorì B
    Biosens Bioelectron; 2008 Sep; 24(1):148-50. PubMed ID: 18455917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes.
    Díaz-González M; González-García MB; Costa-García A
    Biosens Bioelectron; 2005 Apr; 20(10):2035-43. PubMed ID: 15741073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays.
    Rochelet-Dequaire M; Djellouli N; Limoges B; Brossier P
    Analyst; 2009 Feb; 134(2):349-53. PubMed ID: 19173061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.