These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18440544)

  • 1. Unusual behavior of PEG/PPG/Pluronic interfaces studied by a spinning drop tensiometer.
    Martin JD; Velankar SS
    J Colloid Interface Sci; 2008 Jun; 322(2):669-74. PubMed ID: 18440544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled jamming of particle-laden interfaces using a spinning drop tensiometer.
    Cheng HL; Velankar SS
    Langmuir; 2009 Apr; 25(8):4412-20. PubMed ID: 19275131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops.
    Velankar S; Zhou H; Jeon HK; Macosko CW
    J Colloid Interface Sci; 2004 Apr; 272(1):172-85. PubMed ID: 14985035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer.
    Pojman JA; Whitmore C; Turco Liveri ML; Lombardo R; Marszalek J; Parker R; Zoltowski B
    Langmuir; 2006 Mar; 22(6):2569-77. PubMed ID: 16519456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 2003 May; 261(2):529-41. PubMed ID: 16256565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force.
    Chesters AK; Bazhlekov IB
    J Colloid Interface Sci; 2000 Oct; 230(2):229-243. PubMed ID: 11017729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the existence of an effective interfacial tension between miscible fluids. 2. Dodecyl acrylate-poly(dodecyl acrylate) in a spinning drop tensiometer.
    Zoltowski B; Chekanov Y; Masere J; Pojman JA; Volpert V
    Langmuir; 2007 May; 23(10):5522-31. PubMed ID: 17428072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow.
    Bazhlekov IB; Anderson PD; Meijer HE
    J Colloid Interface Sci; 2006 Jun; 298(1):369-94. PubMed ID: 16412455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of gradient copolymers at liquid/liquid interfaces.
    Yuan W; Mok MM; Kim J; Wong CL; Dettmer CM; Nguyen ST; Torkelson JM; Shull KR
    Langmuir; 2010 Mar; 26(5):3261-7. PubMed ID: 19968259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of micelles of Pluronic block copolymers in PEG 200.
    Zhang C; Zhang J; Li W; Feng X; Hou M; Han B
    J Colloid Interface Sci; 2008 Nov; 327(1):157-61. PubMed ID: 18760799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of interfacial tension between two immiscible polymers with and without surfactants at the interface.
    Hu YT
    J Colloid Interface Sci; 2008 Mar; 319(1):287-94. PubMed ID: 18096180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers.
    Balasubramaniam R; Subramanian RS
    Ann N Y Acad Sci; 2004 Nov; 1027():303-10. PubMed ID: 15644363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant effects on thermocapillary interactions of deformable drops.
    Rother MA
    J Colloid Interface Sci; 2007 Dec; 316(2):699-711. PubMed ID: 17889896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclization of PEG and Pluronic Surfactants and the Effects of the Topology on Their Interfacial Activity.
    Watanabe T; Chimura S; Wang Y; Ono T; Isono T; Tajima K; Satoh T; Sato SI; Ida D; Yamamoto T
    Langmuir; 2021 Jun; 37(23):6974-6984. PubMed ID: 34048253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of the effect of insoluble surfactants on the stability of a viscous drop translating in a Hele-Shaw cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2002 Aug; 252(1):236-48. PubMed ID: 16290784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of interfacial composite materials.
    Subramaniam AB; Abkarian M; Mahadevan L; Stone HA
    Langmuir; 2006 Nov; 22(24):10204-8. PubMed ID: 17107022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced force on a microfluidic drop: origin and magnitude.
    Verneuil E; Cordero M; Gallaire F; Baroud CN
    Langmuir; 2009 May; 25(9):5127-34. PubMed ID: 19358521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.