BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 18440686)

  • 1. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies?
    Pyatt D; Natelson E; Golden R
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):119-33. PubMed ID: 18440686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity.
    Heck Hd; Casanova M
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):92-106. PubMed ID: 15450713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde.
    Costa S; Coelho P; Costa C; Silva S; Mayan O; Santos LS; Gaspar J; Teixeira JP
    Toxicology; 2008 Oct; 252(1-3):40-8. PubMed ID: 18721846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formaldehyde and glutaraldehyde and nasal cytotoxicity: case study within the context of the 2006 IPCS Human Framework for the Analysis of a cancer mode of action for humans.
    McGregor D; Bolt H; Cogliano V; Richter-Reichhelm HB
    Crit Rev Toxicol; 2006; 36(10):821-35. PubMed ID: 17118731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematological and toxicological evaluation of formaldehyde as a potential cause of human leukemia.
    Goldstein BD
    Hum Exp Toxicol; 2011 Jul; 30(7):725-35. PubMed ID: 20729258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of human nasal epithelial cells to formaldehyde does not lead to DNA damage in lymphocytes after co-cultivation.
    Neuss S; Moepps B; Speit G
    Mutagenesis; 2010 Jul; 25(4):359-64. PubMed ID: 20299426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of associations between inhaled formaldehyde and lymphohematopoietic cancer through the integration of epidemiological and toxicological evidence with biological plausibility.
    Vincent MJ; Fitch S; Bylsma L; Thompson C; Rogers S; Britt J; Wikoff D
    Toxicol Sci; 2024 May; 199(2):172-193. PubMed ID: 38547404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhaled formaldehyde induces DNA-protein crosslinks and oxidative stress in bone marrow and other distant organs of exposed mice.
    Ye X; Ji Z; Wei C; McHale CM; Ding S; Thomas R; Yang X; Zhang L
    Environ Mol Mutagen; 2013 Dec; 54(9):705-18. PubMed ID: 24136419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound.
    Andersen ME; Clewell HJ; Bermudez E; Dodd DE; Willson GA; Campbell JL; Thomas RS
    Toxicol Sci; 2010 Dec; 118(2):716-31. PubMed ID: 20884683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites.
    Bogen KT; Heilman JM
    Crit Rev Toxicol; 2015; 45 Suppl 1():1-56. PubMed ID: 26414780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-table calculations of excess risk for incidence versus mortality: ethylene oxide case study.
    Sielken RL; Valdez-Flores C
    Regul Toxicol Pharmacol; 2009 Oct; 55(1):82-9. PubMed ID: 19508882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formaldehyde-induced hematopoietic stem and progenitor cell toxicity in mouse lung and nose.
    Zhao Y; MagaƱa LC; Cui H; Huang J; McHale CM; Yang X; Looney MR; Li R; Zhang L
    Arch Toxicol; 2021 Feb; 95(2):693-701. PubMed ID: 33084937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review and meta-analysis of formaldehyde exposure and leukemia.
    Collins JJ; Lineker GA
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):81-91. PubMed ID: 15450712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is exposure to formaldehyde in air causally associated with leukemia?--A hypothesis-based weight-of-evidence analysis.
    Rhomberg LR; Bailey LA; Goodman JE; Hamade AK; Mayfield D
    Crit Rev Toxicol; 2011 Aug; 41(7):555-621. PubMed ID: 21635189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data considerations for regulation of water contaminants.
    Schoeny R; Haber L; Dourson M
    Toxicology; 2006 Apr; 221(2-3):217-24. PubMed ID: 16483704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of leukemia-specific aneuploidies in cultured myeloid progenitor cells in the absence and presence of formaldehyde exposure.
    Kuehner S; Schlaier M; Schwarz K; Speit G
    Toxicol Sci; 2012 Jul; 128(1):72-8. PubMed ID: 22472192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced allergic lung inflammation in rats following formaldehyde exposure: long-term effects on multiple effector systems.
    Lino dos Santos Franco A; Domingos HV; Damazo AS; Breithaupt-Faloppa AC; de Oliveira AP; Costa SK; Oliani SM; Oliveira-Filho RM; Vargaftig BB; Tavares-de-Lima W
    Toxicology; 2009 Feb; 256(3):157-63. PubMed ID: 19071189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.