BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18440694)

  • 1. Thermal inactivation, denaturation and aggregation of mitochondrial aspartate aminotransferase.
    Golub NV; Markossian KA; Kasilovich NV; Sholukh MV; Orlov VN; Kurganov BI
    Biophys Chem; 2008 Jun; 135(1-3):125-31. PubMed ID: 18440694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of alpha-crystallin on thermostability of mitochondrial aspartate aminotransferase.
    Markossian KA; Golub NV; Kleymenov SY; Muranov KO; Sholukh MV; Kurganov BI
    Int J Biol Macromol; 2009 Jun; 44(5):441-6. PubMed ID: 19428479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of kinetics of thermal aggregation of mitochondrial aspartate aminotransferase by dynamic light scattering: protective effect of alpha-crystallin.
    Golub NV; Markossian KA; Sholukh MV; Muranov KO; Kurganov BI
    Eur Biophys J; 2009 Jun; 38(5):547-56. PubMed ID: 19172260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Markossian KA; Khanova HA; Kleimenov SY; Levitsky DI; Chebotareva NA; Asryants RA; Muronetz VI; Saso L; Yudin IK; Kurganov BI
    Biochemistry; 2006 Nov; 45(44):13375-84. PubMed ID: 17073459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.
    Panyukov Y; Yudin I; Drachev V; Dobrov E; Kurganov B
    Biophys Chem; 2007 Apr; 127(1-2):9-18. PubMed ID: 17182167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stability and aggregation of creatine kinase from rabbit skeletal muscle. Effect of 2-hydroxypropyl-beta-cyclodextrin.
    Maloletkina OI; Markossian KA; Belousova LV; Kleimenov SY; Orlov VN; Makeeva VF; Kurganov BI
    Biophys Chem; 2010 May; 148(1-3):121-30. PubMed ID: 20378240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of chaperone-like activity. Suppression of thermal aggregation of betaL-crystallin by alpha-crystallin.
    Khanova HA; Markossian KA; Kurganov BI; Samoilov AM; Kleimenov SY; Levitsky DI; Yudin IK; Timofeeva AC; Muranov KO; Ostrovsky MA
    Biochemistry; 2005 Nov; 44(47):15480-7. PubMed ID: 16300396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of alpha-crystallin on thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Khanova HA; Markossian KA; Kleimenov SY; Levitsky DI; Chebotareva NA; Golub NV; Asryants RA; Muronetz VI; Saso L; Yudin IK; Muranov KO; Ostrovsky MA; Kurganov BI
    Biophys Chem; 2007 Feb; 125(2-3):521-31. PubMed ID: 17229514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scanning calorimetry of the thermal denaturation of human serotransferrin.
    Ikemoto H; Ventura MM
    An Acad Bras Cienc; 1979 Mar; 51(1):165-71. PubMed ID: 464397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal denaturation of alpha-crystallin.
    Castoro JA; Bettelheim FA
    Lens Eye Toxic Res; 1989; 6(4):781-93. PubMed ID: 2487282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 2-hydroxypropyl-beta-cyclodextrin on thermal inactivation, denaturation and aggregation of glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle.
    Maloletkina OI; Markossian KA; Asryants RA; Semenyuk PI; Makeeva VF; Kurganov BI
    Int J Biol Macromol; 2010 Jun; 46(5):487-92. PubMed ID: 20338194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small heat shock protein Hsp27 protects myosin S1 from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation.
    Markov DI; Pivovarova AV; Chernik IS; Gusev NB; Levitsky DI
    FEBS Lett; 2008 Apr; 582(10):1407-12. PubMed ID: 18387368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies.
    Santiago PS; Carvalho JW; Domingues MM; Santos NC; Tabak M
    Biophys Chem; 2010 Nov; 152(1-3):128-38. PubMed ID: 20875698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal inactivation and chaperonin-mediated renaturation of mitochondrial aspartate aminotransferase.
    Lawton JM; Doonan S
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):219-24. PubMed ID: 9693123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A differential scanning calorimetric study of Newcastle disease virus: identification of proteins involved in thermal transitions.
    Shnyrov VL; Zhadan GG; Cobaleda C; Sagrera A; Muñoz-Barroso I; Villar E
    Arch Biochem Biophys; 1997 May; 341(1):89-97. PubMed ID: 9143357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Thermal denaturation of collagen in solutions and fibrils].
    Tsereteli GI
    Biofizika; 1982; 27(5):780-5. PubMed ID: 7138924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase.
    Artigues A; Iriarte A; Martinez-Carrion M
    Arch Biochem Biophys; 2006 Jun; 450(1):30-8. PubMed ID: 16631106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for thermal stability of human low-density lipoprotein.
    Jayaraman S; Gantz D; Gursky O
    Biochemistry; 2005 Mar; 44(10):3965-71. PubMed ID: 15751972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of irreversible thermal protein denaturation at varying temperature. I. The model involving two consecutive irreversible steps.
    Lyubarev AE; Kurganov BI
    Biochemistry (Mosc); 1998 Apr; 63(4):434-40. PubMed ID: 9556526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of heat aggregation of proteins.
    Kurganov BI
    Biochemistry (Mosc); 1998 Mar; 63(3):364-6. PubMed ID: 9526133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.