These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 18440695)

  • 1. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel pyroelectric method of determining ultrasonic transducer output power: device concept, modeling, and preliminary studies.
    Zeqiri B; Gélat PN; Barrie J; Bickley CJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2318-30. PubMed ID: 18051166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers.
    Shaw A
    Ultrasound Med Biol; 2008 Aug; 34(8):1327-42. PubMed ID: 18471952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.
    Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrasound mini-balance for measurement of therapy level ultrasound.
    Sutton Y; McBride K; Pye S
    Phys Med Biol; 2006 Jul; 51(14):3397-404. PubMed ID: 16825738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer standard device to improve the traceable calibration of physiotherapy ultrasound machines.
    Hekkenberg RT; Richards A; Beissner K; Zeqiri B; Bezemer RA; Hodnett M; Prout G; Cantrall C
    Ultrasound Med Biol; 2006 Sep; 32(9):1423-9. PubMed ID: 16965982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of a segmented transducer for rib sparing in HIFU treatments.
    Civale J; Clarke R; Rivens I; ter Haar G
    Ultrasound Med Biol; 2006 Nov; 32(11):1753-61. PubMed ID: 17112961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of back reflections on the acoustic power delivered by physiotherapy ultrasound machines.
    McBride KA; Pye SD
    Ultrasound Med Biol; 2009 Oct; 35(10):1672-8. PubMed ID: 19679389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A harmonic cancellation technique for an ultrasound transducer excited by a switched-mode power converter.
    Tang SC; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):359-67. PubMed ID: 18334342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of quantitative Schlieren assessment of physiotherapy ultrasound fields in describing variations between tissue heating rates of different transducers.
    Johns LD; Demchak TJ; Straub SJ; Howard SM
    Ultrasound Med Biol; 2007 Dec; 33(12):1911-7. PubMed ID: 17698281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.
    N'djin WA; Burtnyk M; Bronskill M; Chopra R
    Int J Hyperthermia; 2012; 28(1):87-104. PubMed ID: 22235788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflector-based phase calibration of ultrasound transducers.
    van Neer PL; Vos HJ; de Jong N
    Ultrasonics; 2011 Jan; 51(1):1-6. PubMed ID: 20537364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure.
    Liu HL; Chen WS; Chen JS; Shih TC; Chen YY; Lin WL
    Ultrasound Med Biol; 2006 May; 32(5):759-67. PubMed ID: 16677935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost-effective shock wave hydrophones.
    Schafer ME
    J Stone Dis; 1993 Apr; 5(2):73-6. PubMed ID: 10148592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.