BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18440829)

  • 1. Probing the role of water in lamellar bone by dehydration in the environmental scanning electron microscope.
    Utku FS; Klein E; Saybasili H; Yucesoy CA; Weiner S
    J Struct Biol; 2008 Jun; 162(3):361-7. PubMed ID: 18440829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures.
    Reznikov N; Almany-Magal R; Shahar R; Weiner S
    Bone; 2013 Feb; 52(2):676-83. PubMed ID: 23153959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamellar bone: structure-function relations.
    Weiner S; Traub W; Wagner HD
    J Struct Biol; 1999 Jun; 126(3):241-55. PubMed ID: 10475685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties.
    Faingold A; Cohen SR; Reznikov N; Wagner HD
    Acta Biomater; 2013 Apr; 9(4):5956-62. PubMed ID: 23220032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The estimated elastic constants for a single bone osteonal lamella.
    Yoon YJ; Cowin SC
    Biomech Model Mechanobiol; 2008 Feb; 7(1):1-11. PubMed ID: 17297631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The consequences of dehydration-hydration on bone anisotropy and implications on the sublamellar organization of mineralized collagen fibrils.
    Utku FS
    J Biomech; 2020 May; 104():109737. PubMed ID: 32197790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study.
    Fratzl P; Schreiber S; Roschger P; Lafage MH; Rodan G; Klaushofer K
    J Bone Miner Res; 1996 Feb; 11(2):248-53. PubMed ID: 8822349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron microscopy studies of collagen, mineral and ground substance in human cortical bone.
    Frasca P; Harper RA; Katz JL
    Scan Electron Microsc; 1981; (Pt 3):339-46. PubMed ID: 7330582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. II. Parallel-fibered and lamellar bones.
    Ferretti M; Muglia MA; Remaggi F; Canè V; Palumbo C
    Ital J Anat Embryol; 1999; 104(3):121-31. PubMed ID: 10575824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scanning electron microscope study of human bony lamellae. Proposal for a new model of collagen lamellar organization.
    Marotti G; Muglia MA
    Arch Ital Anat Embriol; 1988; 93(3):163-75. PubMed ID: 3240029
    [No Abstract]   [Full Text] [Related]  

  • 15. Crystal organization in rat bone lamellae.
    Weiner S; Arad T; Traub W
    FEBS Lett; 1991 Jul; 285(1):49-54. PubMed ID: 2065782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoindentation of osteonal bone lamellae.
    Faingold A; Cohen SR; Wagner HD
    J Mech Behav Biomed Mater; 2012 May; 9():198-206. PubMed ID: 22498296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep.
    Liu Y; Manjubala I; Schell H; Epari DR; Roschger P; Duda GN; Fratzl P
    J Bone Miner Res; 2010 Sep; 25(9):2029-38. PubMed ID: 20225262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen texture and osteocyte distribution in lamellar bone.
    Marotti G; Muglia MA; Palumbo C
    Ital J Anat Embryol; 1995; 100 Suppl 1():95-102. PubMed ID: 11322346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone.
    Boyce TM; Bloebaum RD; Bachus KN; Skedros JG
    Scanning Microsc; 1990 Sep; 4(3):591-600; discussion 600-3. PubMed ID: 2080424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.