BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18440898)

  • 1. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laguerre-model blind system identification: cardiovascular dynamics estimated from multiple peripheral circulatory signals.
    McCombie DB; Reisner AT; Asada HH
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1889-901. PubMed ID: 16285393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2257-64. PubMed ID: 17208992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform.
    Swamy G; Xu D; Olivier NB; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of pulse transit time using two diametric blood pressure waveform measurements.
    Hahn JO; Reisner AT; Asada HH
    Med Eng Phys; 2010 Sep; 32(7):753-9. PubMed ID: 20537933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics.
    Hope SA; Meredith IT; Cameron JD
    Clin Sci (Lond); 2004 Aug; 107(2):205-11. PubMed ID: 15139848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis.
    Mukkamala R; Reisner AT; Hojman HM; Mark RG; Cohen RJ
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):459-67. PubMed ID: 16532772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the aortic pressure waveform from a radial artery pressure waveform via an adaptive transfer function: Feasibility demonstration in swine.
    Swamy G; Xu D; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2362-4. PubMed ID: 19965187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous left ventricular ejection fraction monitoring by aortic pressure waveform analysis.
    Swamy G; Kuiper J; Gudur MS; Olivier NB; Mukkamala R
    Ann Biomed Eng; 2009 Jun; 37(6):1055-68. PubMed ID: 19308732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of wave reflection using peripheral blood pressure waveforms.
    Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind identification of the central aortic pressure waveform from multiple peripheral arterial pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1822-5. PubMed ID: 17945671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states.
    Papaioannou TG; Lekakis JP; Karatzis EN; Papamichael CM; Stamatelopoulos KS; Protogerou AD; Mavrikakis M; Stefanadis C
    Int J Cardiol; 2006 Jun; 110(1):46-52. PubMed ID: 16229910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of pattern recognition and image classification techniques to determine continuous cardiac output from the arterial pressure waveform.
    Martin JF; Volfson LB; Kirzon-Zolin VV; Schukin VG
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):913-20. PubMed ID: 7959797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac output and left atrial pressure monitoring by right ventricular pressure waveform analysis for potential implantable device application.
    Xu D; Olivier NB; Mukkamala R
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2335-9. PubMed ID: 19457736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the aortic pressure waveform from a peripheral artery pressure waveform via an adaptive transfer function.
    Swamy G; Mukkamala R; Olivier N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1385-8. PubMed ID: 19162926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines.
    Karamanoglu M; Bennett TD
    Cardiovasc Eng; 2006 Sep; 6(3):83-92. PubMed ID: 16960760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of changes in instantaneous aortic blood flow by the analysis of arterial blood pressure.
    Arai T; Lee K; Marini RP; Cohen RJ
    J Appl Physiol (1985); 2012 Jun; 112(11):1832-8. PubMed ID: 22442022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis.
    Rajani R; Chowienczyk P; Redwood S; Guilcher A; Chambers JB
    J Hypertens; 2008 Dec; 26(12):2381-8. PubMed ID: 19008716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cardiac output and left atrial pressure monitoring by pulmonary artery pressure waveform analysis.
    Lu Z; Mukkamala R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():214-7. PubMed ID: 17946386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.