These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 18440928)
1. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchöe, and Opuntia. Winter K; Garcia M; Holtum JA J Exp Bot; 2008; 59(7):1829-40. PubMed ID: 18440928 [TBL] [Abstract][Full Text] [Related]
2. Diel leaf growth cycles in Clusia spp. are related to changes between C3 photosynthesis and crassulacean acid metabolism during development and during water stress. Walter A; Christ MM; Rascher U; Schurr U; Osmond B Plant Cell Environ; 2008 Apr; 31(4):484-91. PubMed ID: 18182020 [TBL] [Abstract][Full Text] [Related]
3. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species. Griffiths H; Robe WE; Girnus J; Maxwell K J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219 [TBL] [Abstract][Full Text] [Related]
4. Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis, Clusia rosea and Clusia cylindrica. Winter K; Garcia M; Holtum JA J Exp Bot; 2009; 60(11):3167-77. PubMed ID: 19487388 [TBL] [Abstract][Full Text] [Related]
5. Phosphoenolpyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene. Vaasen A; Begerow D; Hampp R Plant Cell Environ; 2006 Dec; 29(12):2113-23. PubMed ID: 17081245 [TBL] [Abstract][Full Text] [Related]
6. Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. Winter K; Garcia M; Holtum JA J Exp Bot; 2011 Jul; 62(11):4037-42. PubMed ID: 21504876 [TBL] [Abstract][Full Text] [Related]
7. Oxygen isotope composition of CAM and C3 Clusia species: non-steady-state dynamics control leaf water 18O enrichment in succulent leaves. Cernusak LA; Mejia-Chang M; Winter K; Griffiths H Plant Cell Environ; 2008 Nov; 31(11):1644-62. PubMed ID: 18684241 [TBL] [Abstract][Full Text] [Related]
8. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. von Caemmerer S; Griffiths H Plant Cell Environ; 2009 May; 32(5):567-76. PubMed ID: 19210641 [TBL] [Abstract][Full Text] [Related]
9. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Winter K; Holtum JA J Exp Bot; 2014 Jul; 65(13):3425-41. PubMed ID: 24642847 [TBL] [Abstract][Full Text] [Related]
10. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939 [TBL] [Abstract][Full Text] [Related]
11. Clusia: Holy Grail and enigma. Lüttge U J Exp Bot; 2008; 59(7):1503-14. PubMed ID: 18436546 [TBL] [Abstract][Full Text] [Related]
12. Developmental dynamics of crassulacean acid metabolism (CAM) in Opuntia ficus-indica. Niechayev NA; Mayer JA; Cushman JC Ann Bot; 2023 Nov; 132(4):869-879. PubMed ID: 37256773 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. Guralnick LJ; Cline A; Smith M; Sage RF J Exp Bot; 2008; 59(7):1735-42. PubMed ID: 18440927 [TBL] [Abstract][Full Text] [Related]
14. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration. Ceusters J; Borland AM; Londers E; Verdoodt V; Godts C; De Proft MP Physiol Plant; 2009 Feb; 135(2):174-84. PubMed ID: 19077141 [TBL] [Abstract][Full Text] [Related]
15. How closely do the delta(13)C values of Crassulacean Acid metabolism plants reflect the proportion of CO(2) fixed during day and night? Winter K; Holtum JA Plant Physiol; 2002 Aug; 129(4):1843-51. PubMed ID: 12177497 [TBL] [Abstract][Full Text] [Related]
16. Short-Term Regulation of Crassulacean Acid Metabolism Activity in a Tropical Hemiepiphyte, Clusia uvitana. Zotz G; Winter K Plant Physiol; 1993 Jul; 102(3):835-841. PubMed ID: 12231870 [TBL] [Abstract][Full Text] [Related]
17. Carbon and water relations for developing fruits of Opuntia ficus-indica (L.) Miller, including effects of drought and gibberellic acid. de La Barrera E; Nobel PS J Exp Bot; 2004 Mar; 55(397):719-29. PubMed ID: 14966221 [TBL] [Abstract][Full Text] [Related]
18. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor. Borland AM; Griffiths H Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414 [TBL] [Abstract][Full Text] [Related]
19. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Holtum JAM; Hancock LP; Edwards EJ; Winter K Photosynth Res; 2017 Oct; 134(1):17-25. PubMed ID: 28871459 [TBL] [Abstract][Full Text] [Related]
20. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). Cushman JC; Tillett RL; Wood JA; Branco JM; Schlauch KA J Exp Bot; 2008; 59(7):1875-94. PubMed ID: 18319238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]