BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18440930)

  • 21. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
    Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C
    BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development.
    Cadot Y; Miñana-Castelló MT; Chevalier M
    J Agric Food Chem; 2006 Nov; 54(24):9206-15. PubMed ID: 17117811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.).
    Sofo A; Nuzzo V; Tataranni G; Manfra M; De Nisco M; Scopa A
    J Plant Physiol; 2012 Jul; 169(11):1023-31. PubMed ID: 22583647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.
    Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA
    Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Young grapevines exhibit interspecific differences in hydraulic response to freeze stress but not in recovery.
    Smith MS; Centinari M
    Planta; 2019 Aug; 250(2):495-505. PubMed ID: 31089803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries.
    Scharwies JD; Tyerman SD
    Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of gibberellic acid (GA
    Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F
    J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascular Connections Into the Grape Berry: The Link of Structural Investment to Seededness.
    Xiao Z; Chin S; White RG; Gourieroux AM; Pagay V; Tyerman SD; Schmidtke LM; Rogiers SY
    Front Plant Sci; 2021; 12():662433. PubMed ID: 33936151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flavor of cold-hardy grapes: impact of berry maturity and environmental conditions.
    Pedneault K; Dorais M; Angers P
    J Agric Food Chem; 2013 Nov; 61(44):10418-38. PubMed ID: 24151907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development.
    Böttcher C; Boss PK; Davies C
    J Exp Bot; 2011 Aug; 62(12):4267-80. PubMed ID: 21543520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cessation of berry growth coincides with leaf complete stomatal closure at pre-veraison for grapevine (Vitis vinifera) subjected to progressive drought stress.
    Knipfer T; Wilson N; Jorgensen-Bambach NE; McElrone AJ; Bartlett MK; Castellarin SD
    Ann Bot; 2023 Nov; 132(5):979-988. PubMed ID: 37742279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.).
    Allegro G; Pastore C; Valentini G; Muzzi E; Filippetti I
    J Sci Food Agric; 2016 Oct; 96(13):4553-9. PubMed ID: 26888489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time.
    Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B
    BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.
    Böttcher C; Burbidge CA; Boss PK; Davies C
    BMC Plant Biol; 2015 Sep; 15():223. PubMed ID: 26377914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of stilbene synthase in Vitis vinifera L. during berry development.
    Fornara V; Onelli E; Sparvoli F; Rossoni M; Aina R; Marino G; Citterio S
    Protoplasma; 2008; 233(1-2):83-93. PubMed ID: 18615235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development.
    Toups HS; Cochetel N; Gray D; Cramer GR
    BMC Genomics; 2020 Jul; 21(1):472. PubMed ID: 32646368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and in situ localization of two major PR proteins of grapevine berries during development and after UV-C exposition.
    Colas S; Afoufa-Bastien D; Jacquens L; Clément C; Baillieul F; Mazeyrat-Gourbeyre F; Monti-Dedieu L
    PLoS One; 2012; 7(8):e43681. PubMed ID: 22937077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries.
    Wada H; Shackel KA; Matthews MA
    Planta; 2008 May; 227(6):1351-61. PubMed ID: 18317799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.