BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 18441342)

  • 1. Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets.
    Burgoon LD; Zacharewski TR
    Toxicol Sci; 2008 Aug; 104(2):412-8. PubMed ID: 18441342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure.
    Johnson KJ; Auerbach SS; Costa E
    Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating gene expression and splicing dynamics across dose-response oxidative modulators.
    Barutcu AR; Black MB; Samuel R; Slattery S; McMullen PD; Nong A
    Front Genet; 2024; 15():1389095. PubMed ID: 38846964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic point of departure determination: a comparison of distribution-based and gene set-based approaches.
    Costa E; Johnson KJ; Walker CA; O'Brien JM
    Front Genet; 2024; 15():1374791. PubMed ID: 38784034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic Dose prediction of Chemical Compounds to Biomarkers using an ANOVA based Gene Expression Analysis.
    Hasan MN; Akond Z; Alam MJ; Begum AA; Rahman M; Mollah MNH
    Bioinformation; 2018; 14(7):369-377. PubMed ID: 30262974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use cases, best practice and reporting standards for metabolomics in regulatory toxicology.
    Viant MR; Ebbels TMD; Beger RD; Ekman DR; Epps DJT; Kamp H; Leonards PEG; Loizou GD; MacRae JI; van Ravenzwaay B; Rocca-Serra P; Salek RM; Walk T; Weber RJM
    Nat Commun; 2019 Jul; 10(1):3041. PubMed ID: 31292445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Various Nonlinear Response Surfaces for Mathematical Description of the Type of Combined Toxicity.
    Varaksin AN; Panov VG; Katsnelson BA; Minigalieva IA
    Dose Response; 2018; 16(4):1559325818816596. PubMed ID: 30574029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark Dose Modeling of
    Guo X; Mei N
    Toxicol Res; 2018 Oct; 34(4):303-310. PubMed ID: 30370005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical relationship between metabolic decomposition and chemical uptake predicts bioconcentration factor data for diverse chemical exposures.
    Rowland MA; Wear H; Watanabe KH; Gust KA; Mayo ML
    BMC Syst Biol; 2018 Aug; 12(1):81. PubMed ID: 30086736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice.
    Fader KA; Nault R; Raehtz S; McCabe LR; Zacharewski TR
    Toxicol Appl Pharmacol; 2018 Jun; 348():85-98. PubMed ID: 29673856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism.
    Fader KA; Nault R; Zhang C; Kumagai K; Harkema JR; Zacharewski TR
    Sci Rep; 2017 Jul; 7(1):5921. PubMed ID: 28725001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons.
    Labib S; Williams A; Kuo B; Yauk CL; White PA; Halappanavar S
    Arch Toxicol; 2017 Jul; 91(7):2599-2616. PubMed ID: 27858113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal-Free Chemical Safety Assessment.
    Loizou GD
    Front Pharmacol; 2016; 7():218. PubMed ID: 27493630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Points of Departure for Health Risk Assessment Based on High-Throughput Screening Data.
    Sand S; Parham F; Portier CJ; Tice RR; Krewski D
    Environ Health Perspect; 2017 Apr; 125(4):623-633. PubMed ID: 27384688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Alters Lipid Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6 Mice.
    Fader KA; Nault R; Ammendolia DA; Harkema JR; Williams KJ; Crawford RB; Kaminski NE; Potter D; Sharratt B; Zacharewski TR
    Toxicol Sci; 2015 Dec; 148(2):567-80. PubMed ID: 26377647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay.
    Guo X; Heflich RH; Dial SL; Richter PA; Moore MM; Mei N
    Mutagenesis; 2016 May; 31(3):287-96. PubMed ID: 26001754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice.
    Nault R; Fader KA; Zacharewski T
    BMC Genomics; 2015 May; 16(1):373. PubMed ID: 25958198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration.
    Gao C; Weisman D; Lan J; Gou N; Gu AZ
    Environ Sci Technol; 2015 Apr; 49(7):4618-26. PubMed ID: 25785649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for the next generation of risk science.
    Krewski D; Westphal M; Andersen ME; Paoli GM; Chiu WA; Al-Zoughool M; Croteau MC; Burgoon LD; Cote I
    Environ Health Perspect; 2014 Aug; 122(8):796-805. PubMed ID: 24727499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses.
    Snyder-Talkington BN; Dymacek J; Porter DW; Wolfarth MG; Mercer RR; Pacurari M; Denvir J; Castranova V; Qian Y; Guo NL
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):476-89. PubMed ID: 23845593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.