These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18441420)

  • 1. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.
    Picioreanu C; van Loosdrecht MC; Katuri KP; Scott K; Head IM
    Water Sci Technol; 2008; 57(7):965-71. PubMed ID: 18441420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model for biofilm-based microbial fuel cells.
    Picioreanu C; Head IM; Katuri KP; van Loosdrecht MC; Scott K
    Water Res; 2007 Jul; 41(13):2921-40. PubMed ID: 17537478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance.
    Picioreanu C; van Loosdrecht MC; Curtis TP; Scott K
    Bioelectrochemistry; 2010 Apr; 78(1):8-24. PubMed ID: 19523880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Sep; 24(1):41-7. PubMed ID: 18440217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cells meet with external resistance.
    Katuri KP; Scott K; Head IM; Picioreanu C; Curtis TP
    Bioresour Technol; 2011 Feb; 102(3):2758-66. PubMed ID: 21146983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.
    Yang S; Jia B; Liu H
    Bioresour Technol; 2009 Feb; 100(3):1197-202. PubMed ID: 18790635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conduction-based modeling of the biofilm anode of a microbial fuel cell.
    Kato Marcus A; Torres CI; Rittmann BE
    Biotechnol Bioeng; 2007 Dec; 98(6):1171-82. PubMed ID: 17570714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.
    Ki D; Park J; Lee J; Yoo K
    Water Sci Technol; 2008; 58(11):2195-201. PubMed ID: 19092196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates.
    Lee HS; Parameswaran P; Kato-Marcus A; Torres CI; Rittmann BE
    Water Res; 2008 Mar; 42(6-7):1501-10. PubMed ID: 18035391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.
    Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS
    Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-growth kinetic model for biological wastewater reactors.
    Chang HT; Parulekar SJ; Ahmed M
    Biotechnol Prog; 2005; 21(2):423-31. PubMed ID: 15801781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous microbial fuel cells convert carbohydrates to electricity.
    Rabaey I; Ossieur W; Verhaege M; Verstraete W
    Water Sci Technol; 2005; 52(1-2):515-23. PubMed ID: 16180472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.