BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18441783)

  • 1. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO.
    Rhine ED; Onesios KM; Serfes ME; Reinfelder JR; Young LY
    Environ Sci Technol; 2008 Mar; 42(5):1423-9. PubMed ID: 18441783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms.
    Napieralski SA; Fang Y; Marcon V; Forsythe B; Brantley SL; Xu H; Roden EE
    Geobiology; 2022 Mar; 20(2):271-291. PubMed ID: 34633148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T
    Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The whole genome insight on condition-specific redox activity and arsenopyrite interaction promoting As-mobilization by strain Lysinibacillus sp. B2A1.
    Rathod J; Dhanani AS; Jean JS; Jiang WT
    J Hazard Mater; 2019 Feb; 364():671-681. PubMed ID: 30399550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformations of arsenic: mobilization from glauconitic sediments to water.
    Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY
    Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China.
    Zhang J; Ma T; Yan Y; Xie X; Abass OK; Liu C; Zhao Z; Wang Z
    Environ Pollut; 2018 Jun; 237():28-38. PubMed ID: 29466772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeochemical transformations of arsenic in circumneutral freshwater sediments.
    Nicholas DR; Ramamoorthy S; Palace V; Spring S; Moore JN; Rosenzweig RF
    Biodegradation; 2003 Apr; 14(2):123-37. PubMed ID: 12877467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments.
    Garcia-Dominguez E; Mumford A; Rhine ED; Paschal A; Young LY
    FEMS Microbiol Ecol; 2008 Nov; 66(2):401-10. PubMed ID: 18717738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments.
    Das S; Liu CC; Jean JS; Lee CC; Yang HJ
    J Hazard Mater; 2016 Jun; 310():11-9. PubMed ID: 26897570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.
    Hassan Z; Sultana M; van Breukelen BM; Khan SI; Röling WF
    FEMS Microbiol Ecol; 2015 Apr; 91(4):. PubMed ID: 25778510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed.
    Anguita JM; Rojas C; Pastén PA; Vargas IT
    Biodegradation; 2018 Feb; 29(1):59-69. PubMed ID: 29143902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental microbes can speciate and cycle arsenic.
    Rhine ED; Garcia-Dominguez E; Phelps CD; Young LY
    Environ Sci Technol; 2005 Dec; 39(24):9569-73. PubMed ID: 16475337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.
    Ramírez-Aldaba H; Valles OP; Vazquez-Arenas J; Rojas-Contreras JA; Valdez-Pérez D; Ruiz-Baca E; Meraz-Rodríguez M; Sosa-Rodríguez FS; Rodríguez ÁG; Lara RH
    Sci Total Environ; 2016 Oct; 566-567():1106-1119. PubMed ID: 27312277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions.
    Zhang P; Yao W; Yuan S
    Water Res; 2017 Feb; 109():245-252. PubMed ID: 27912099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.