These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 18441783)
1. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Rhine ED; Onesios KM; Serfes ME; Reinfelder JR; Young LY Environ Sci Technol; 2008 Mar; 42(5):1423-9. PubMed ID: 18441783 [TBL] [Abstract][Full Text] [Related]
2. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. Napieralski SA; Fang Y; Marcon V; Forsythe B; Brantley SL; Xu H; Roden EE Geobiology; 2022 Mar; 20(2):271-291. PubMed ID: 34633148 [TBL] [Abstract][Full Text] [Related]
3. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
4. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
5. The whole genome insight on condition-specific redox activity and arsenopyrite interaction promoting As-mobilization by strain Lysinibacillus sp. B2A1. Rathod J; Dhanani AS; Jean JS; Jiang WT J Hazard Mater; 2019 Feb; 364():671-681. PubMed ID: 30399550 [TBL] [Abstract][Full Text] [Related]
6. Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492 [TBL] [Abstract][Full Text] [Related]
7. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China. Zhang J; Ma T; Yan Y; Xie X; Abass OK; Liu C; Zhao Z; Wang Z Environ Pollut; 2018 Jun; 237():28-38. PubMed ID: 29466772 [TBL] [Abstract][Full Text] [Related]
8. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Nicholas DR; Ramamoorthy S; Palace V; Spring S; Moore JN; Rosenzweig RF Biodegradation; 2003 Apr; 14(2):123-37. PubMed ID: 12877467 [TBL] [Abstract][Full Text] [Related]
10. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. Das S; Liu CC; Jean JS; Lee CC; Yang HJ J Hazard Mater; 2016 Jun; 310():11-9. PubMed ID: 26897570 [TBL] [Abstract][Full Text] [Related]
11. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions. Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274 [TBL] [Abstract][Full Text] [Related]
12. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. Hassan Z; Sultana M; van Breukelen BM; Khan SI; Röling WF FEMS Microbiol Ecol; 2015 Apr; 91(4):. PubMed ID: 25778510 [TBL] [Abstract][Full Text] [Related]
13. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed. Anguita JM; Rojas C; Pastén PA; Vargas IT Biodegradation; 2018 Feb; 29(1):59-69. PubMed ID: 29143902 [TBL] [Abstract][Full Text] [Related]
14. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chang JS; Yoon IH; Kim KW Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535 [TBL] [Abstract][Full Text] [Related]
15. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
16. Environmental microbes can speciate and cycle arsenic. Rhine ED; Garcia-Dominguez E; Phelps CD; Young LY Environ Sci Technol; 2005 Dec; 39(24):9569-73. PubMed ID: 16475337 [TBL] [Abstract][Full Text] [Related]
17. Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809 [TBL] [Abstract][Full Text] [Related]
18. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic. Ramírez-Aldaba H; Valles OP; Vazquez-Arenas J; Rojas-Contreras JA; Valdez-Pérez D; Ruiz-Baca E; Meraz-Rodríguez M; Sosa-Rodríguez FS; Rodríguez ÁG; Lara RH Sci Total Environ; 2016 Oct; 566-567():1106-1119. PubMed ID: 27312277 [TBL] [Abstract][Full Text] [Related]
19. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions. Zhang P; Yao W; Yuan S Water Res; 2017 Feb; 109():245-252. PubMed ID: 27912099 [TBL] [Abstract][Full Text] [Related]