These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18441824)

  • 21. [Experimental investigation of nano-TiO2 on combustion and desulfurization Catalysis].
    Wang SQ; Zhao Y; Tan Q; Xu PY
    Huan Jing Ke Xue; 2008 Feb; 29(2):518-24. PubMed ID: 18613530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of fly ash from the dry flue gas desulfurization system for iron ore sintering plants.
    Sheng G; Huang P; Mou Y; Zhou C
    Environ Technol; 2012; 33(7-9):837-44. PubMed ID: 22720407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental study on the evaporation and chlorine migration of desulfurization wastewater in flue gas.
    Zheng C; Zheng H; Yang Z; Liu S; Li X; Zhang Y; Weng W; Gao X
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4791-4800. PubMed ID: 30565110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.
    Mohanty CR; Adapala S; Meikap BC
    J Hazard Mater; 2009 Jun; 165(1-3):427-34. PubMed ID: 19036509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.
    Głomba M
    J Air Waste Manag Assoc; 2010 Aug; 60(8):1009-16. PubMed ID: 20842941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eulerian-Eulerian Numerical Study of the Flue Gas Desulfurization Process in a Semidry Spouted Bed Reactor.
    Wu F; Bai J; Yue K; Gong M; Ma X; Zhou W
    ACS Omega; 2020 Feb; 5(7):3282-3293. PubMed ID: 32118143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfur dioxide removal: An overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration.
    Hanif MA; Ibrahim N; Abdul Jalil A
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27515-27540. PubMed ID: 32415453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of CO
    Hong J; Zou X; Qin Z; Zhou B; Geng S; Zhang Y; Zou X; Lu X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of different additives on the performance of spray dryer system during incineration process.
    Wey MY; Peng CY; Wu HY; Chiang BC; Liu ZS
    Environ Technol; 2002 Jun; 23(6):695-705. PubMed ID: 12118621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adverse Effects of Inherent CaO in Coconut Shell-Derived Activated Carbon on Its Performance during Flue Gas Desulfurization.
    Zhao Y; Dou J; Duan X; Chai H; Oliveira J; Yu J
    Environ Sci Technol; 2020 Feb; 54(3):1973-1981. PubMed ID: 31913026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative evaluation of recarbonated CaCO
    Kang SY; Go ES; Seo SB; Kim HW; Keel SI; Lee SH
    Sci Total Environ; 2021 Mar; 758():143704. PubMed ID: 33243493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2-polyacrylonitrile nanofibers.
    Su C; Ran X; Hu J; Shao C
    Environ Sci Technol; 2013 Oct; 47(20):11562-8. PubMed ID: 24024677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circulating regeneration and resource recovery of flue gas desulfurization residuals using a membrane electroreactor: from lab concept to commercial scale.
    Yang C; Hu Y; Cao L; Yang J
    Environ Sci Technol; 2012 Oct; 46(20):11273-9. PubMed ID: 22974141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of wet flue gas desulfurization (WFGD) on fine particle (PM
    Yao S; Cheng S; Li J; Zhang H; Jia J; Sun X
    J Environ Sci (China); 2019 Mar; 77():32-42. PubMed ID: 30573096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: optimization study.
    Lau LC; Lee KT; Mohamed AR
    J Hazard Mater; 2010 Nov; 183(1-3):738-45. PubMed ID: 20724075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation.
    Nie Q; Hu W; Huang B; Shu X; He Q
    J Hazard Mater; 2019 May; 369():503-511. PubMed ID: 30807990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dissolution kinetics of industrial brine sludge wastes from a chlor-alkali industry as a sorbent for wet flue gas desulfurization (FGD).
    Masilela E; Lerotholi L; Seodigeng T; Rutto H
    J Air Waste Manag Assoc; 2018 Feb; 68(2):93-99. PubMed ID: 28128686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling mechanism of activated carbon mixed with dust for flue gas desulfurization and denitrification.
    Guo J; Li Y; Xiong J; Zhu T
    J Environ Sci (China); 2020 Dec; 98():205-214. PubMed ID: 33097153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Intermediate experiment and mechanism analysis of flue gas desulfurization technology by circulating fluidized bed].
    Zhao X; Wu S; Ma C; Qin Y
    Huan Jing Ke Xue; 2002 Mar; 23(2):109-12. PubMed ID: 12048805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Desulfurization Performance and Kinetics of Potassium Hydroxide-Impregnated Char Sorbents for SO
    Dou J; Zhao Y; Duan X; Chai H; Li L; Yu J
    ACS Omega; 2020 Aug; 5(30):19194-19201. PubMed ID: 32775922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.