These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18441824)

  • 41. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Particle trajectory model desulfurization spray tower used in numerical simulation of flue gas].
    Zhao Z; Tian HZ; Hao JM; Zhang H; Liu HQ
    Huan Jing Ke Xue; 2005 Nov; 26(6):33-7. PubMed ID: 16447425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.
    Manovic V; Anthony EJ
    Environ Sci Technol; 2007 Jun; 41(12):4435-40. PubMed ID: 17626448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic purification of coal ash by a gas-solid fluidized bed.
    Liu KY; Wey MY
    Chemosphere; 2005 Sep; 60(10):1341-8. PubMed ID: 16054902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of lignite as support precursor on deep desulfurization performance of semicoke supported zinc oxide sorbent in hot coal gas.
    Li T; Ren X; Bao L; Wang M; Bao W; Chang L
    RSC Adv; 2020 Mar; 10(22):12780-12787. PubMed ID: 35492103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disposal of low concentration fume with solid waste modified by microwave.
    He Z; Jin Y; Zhang J; Liu J; Guan Z
    J Environ Sci (China); 2011 Jun; 23 Suppl():S149-52. PubMed ID: 25084580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them.
    Li J; Yang H; Wu Y; Lv J; Yue G
    Environ Sci Technol; 2013 Jun; 47(12):6681-7. PubMed ID: 23676203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving the removal of fine particles by chemical agglomeration during the limestone-gypsum wet flue gas desulfurization process.
    Zhou L; Liu Y; Luo L; Yuan Z; Yang L; Wu H
    J Environ Sci (China); 2019 Jun; 80():35-44. PubMed ID: 30952350
    [TBL] [Abstract][Full Text] [Related]  

  • 49. O
    Liu F; Cai M; Liu X; Zhu T; Zou Y
    J Environ Sci (China); 2021 Jun; 104():253-263. PubMed ID: 33985728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic seawater flue gas desulfurization process: an experimental pilot plant study.
    Barrero FV; Ollero P; Ortiz FJ; Villanueva A
    Environ Sci Technol; 2007 Oct; 41(20):7114-9. PubMed ID: 17993156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.
    Bodénan F; Deniard P
    Chemosphere; 2003 May; 51(5):335-47. PubMed ID: 12597999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.
    George KV; Manjunath S; Rao CV; Bopche AM
    Environ Technol; 2003 Nov; 24(11):1425-30. PubMed ID: 14733395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The experimental study to Hg0 adsorption of fly ash in flue gas].
    Wang L; Peng S; Chen C
    Huan Jing Ke Xue; 2003 Nov; 24(6):59-62. PubMed ID: 14768566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental study on flue gas purifying of MSW incineration using in-pipe jet adsorption techniques.
    Zhong Z; Jin B; Huang Y; Zhou H; Zhang M
    Waste Manag; 2008; 28(10):1923-32. PubMed ID: 18061433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A pilot plant technical assessment of an advanced in-duct desulphurisation process.
    Gutiérrez Ortiz FJ; Ollero P
    J Hazard Mater; 2001 May; 83(3):197-218. PubMed ID: 11348732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas.
    Yang Z; Li H; Feng S; Li P; Liao C; Liu X; Zhao J; Yang J; Lee PH; Shih K
    Langmuir; 2018 Jul; 34(30):8739-8749. PubMed ID: 29983072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous desulfurization and denitrification of flue gas by ·OH radicals produced from O2+ and water vapor in a duct.
    Bai M; Zhang Z; Bai M
    Environ Sci Technol; 2012 Sep; 46(18):10161-8. PubMed ID: 22891818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative, chemical, and mineralogical characterization of flue gas desulfurization by-products.
    Laperche V; Bigham JM
    J Environ Qual; 2002; 31(3):979-88. PubMed ID: 12026103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures.
    Yang S; Guo Y; Yan N; Qu Z; Xie J; Yang C; Jia J
    J Hazard Mater; 2011 Feb; 186(1):508-15. PubMed ID: 21130564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.