These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18441838)

  • 1. A biodynamic understanding of dietborne metal uptake by a freshwater invertebrate.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2008 Mar; 42(5):1801-6. PubMed ID: 18441838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting dietborne metal toxicity from metal influxes.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2009 Jul; 43(13):4915-21. PubMed ID: 19673285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers.
    Croteau MN; Luoma SN; Pellet B
    Aquat Toxicol; 2007 Jun; 83(2):116-25. PubMed ID: 17467071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures.
    Croteau MN; Misra SK; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2014 Sep; 48(18):10929-37. PubMed ID: 25110983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2007 May; 41(9):3140-5. PubMed ID: 17539517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes.
    Croteau MN; Luoma SN
    Environ Toxicol Chem; 2005 Nov; 24(11):2871-8. PubMed ID: 16398124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the Biotic Ligand Model framework to investigate binary metal interactions on the uptake of Ag, Cd, Cu, Ni, Pb and Zn in the freshwater snail Lymnaea stagnalis.
    Crémazy A; Brix KV; Wood CM
    Sci Total Environ; 2019 Jan; 647():1611-1625. PubMed ID: 30180365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?
    Oliver AL; Croteau MN; Stoiber TL; Tejamaya M; Römer I; Lead JR; Luoma SN
    Environ Pollut; 2014 Jun; 189():87-91. PubMed ID: 24641838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies.
    Cain D; Croteau MN; Luoma S
    Environ Toxicol Chem; 2011 Nov; 30(11):2532-41. PubMed ID: 21898563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag.
    Croteau MN; Misra SK; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2011 Aug; 45(15):6600-7. PubMed ID: 21667957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying diet-borne metal uptake in Gammarus pulex using stable isotope tracers.
    Pellet B; Ayrault S; Tusseau-Vuillemin MH; Gourlay-Francé C
    Ecotoxicol Environ Saf; 2014 Dec; 110():182-9. PubMed ID: 25244686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn.
    Shi D; Wang WX
    Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biodynamic model predicting copper and cadmium bioaccumulation in caddisflies: Linkages between field studies and laboratory exposures.
    Hornberger MI
    PLoS One; 2024; 19(2):e0297801. PubMed ID: 38386678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex.
    Leonard EM; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Jun; 158(1):10-21. PubMed ID: 23570754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.
    Goulet RR; Krack S; Doyle PJ; Hare L; Vigneault B; McGeer JC
    Aquat Toxicol; 2007 Feb; 81(2):117-25. PubMed ID: 17173986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana.
    Kalman J; Smith BD; Bury NR; Rainbow PS
    Aquat Toxicol; 2014 Sep; 154():121-30. PubMed ID: 24880784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part I: Relative importance of water and sediment as exposure routes.
    Ramskov T; Thit A; Croteau MN; Selck H
    Aquat Toxicol; 2015 Jul; 164():81-91. PubMed ID: 25935103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling whole body trace metal concentrations in aquatic invertebrate communities: A trait-based approach.
    Hug Peter D; Sardy S; Diaz Rodriguez J; Castella E; Slaveykova VI
    Environ Pollut; 2018 Feb; 233():419-428. PubMed ID: 29100179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace metal bioaccumulation: models, metabolic availability and toxicity.
    Rainbow PS
    Environ Int; 2007 May; 33(4):576-82. PubMed ID: 16814385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water.
    Baumann Z; Fisher NS
    Sci Total Environ; 2011 Jun; 409(13):2607-15. PubMed ID: 21481438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.