BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18442282)

  • 21. Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy.
    Takahashi Y; Nishikawa M; Takakura Y
    Adv Drug Deliv Rev; 2009 Jul; 61(9):760-6. PubMed ID: 19386274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convenient targeting of stealth siRNA-lipoplexes to cells with chelator lipid-anchored molecules.
    Herringson TP; Altin JG
    J Control Release; 2009 Nov; 139(3):229-38. PubMed ID: 19595724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiling RNA interference (RNAi)-mediated toxicity in neural cultures for effective short interfering RNA design.
    Read ML; Mir S; Spice R; Seabright RJ; Suggate EL; Ahmed Z; Berry M; Logan A
    J Gene Med; 2009 Jun; 11(6):523-34. PubMed ID: 19322910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs.
    de Jonge J; Holtrop M; Wilschut J; Huckriede A
    Gene Ther; 2006 Mar; 13(5):400-11. PubMed ID: 16267567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macrolide- and tetracycline-adjustable siRNA-mediated gene silencing in mammalian cells using polymerase II-dependent promoter derivatives.
    Malphettes L; Fussenegger M
    Biotechnol Bioeng; 2004 Nov; 88(4):417-25. PubMed ID: 15382105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. siRNA binding proteins of microglial cells: PKR is an unanticipated ligand.
    Zhang Z; Weinschenk T; Guo K; Schluesener HJ
    J Cell Biochem; 2006 Apr; 97(6):1217-29. PubMed ID: 16315288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: a FRET-based probe for sensing double-stranded fluorophore tagged small RNAs.
    Koukiekolo R; Jakubek ZJ; Cheng J; Sagan SM; Pezacki JP
    Biophys Chem; 2009 Aug; 143(3):166-9. PubMed ID: 19491057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
    Sun X; Rogoff HA; Li CJ
    Nat Biotechnol; 2008 Dec; 26(12):1379-82. PubMed ID: 19029911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A peptidomimetic siRNA transfection reagent for highly effective gene silencing.
    Utku Y; Dehan E; Ouerfelli O; Piano F; Zuckermann RN; Pagano M; Kirshenbaum K
    Mol Biosyst; 2006 Jun; 2(6-7):312-7. PubMed ID: 16880950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reducible siRNA dimeric conjugates for efficient cellular uptake and gene silencing.
    Chung HJ; Hong CA; Lee SH; Jo SD; Park TG
    Bioconjug Chem; 2011 Feb; 22(2):299-306. PubMed ID: 21222435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures.
    Tanaka M; Yanagawa Y; Hirashima N
    J Neurosci Methods; 2009 Mar; 178(1):80-6. PubMed ID: 19114056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells.
    Liu XX; Rocchi P; Qu FQ; Zheng SQ; Liang ZC; Gleave M; Iovanna J; Peng L
    ChemMedChem; 2009 Aug; 4(8):1302-10. PubMed ID: 19533723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular small interfering RNA delivery using genetically engineered double-stranded RNA binding protein domain.
    Kim J; Lee SH; Choe J; Park TG
    J Gene Med; 2009 Sep; 11(9):804-12. PubMed ID: 19569061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape.
    Bartz R; Fan H; Zhang J; Innocent N; Cherrin C; Beck SC; Pei Y; Momose A; Jadhav V; Tellers DM; Meng F; Crocker LS; Sepp-Lorenzino L; Barnett SF
    Biochem J; 2011 Apr; 435(2):475-87. PubMed ID: 21265735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. siRNA stabilization prolongs gene knockdown in primary T lymphocytes.
    Mantei A; Rutz S; Janke M; Kirchhoff D; Jung U; Patzel V; Vogel U; Rudel T; Andreou I; Weber M; Scheffold A
    Eur J Immunol; 2008 Sep; 38(9):2616-25. PubMed ID: 18792414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of scratching behavior by silencing an endogenous cyclooxygenase-1 gene in the skin through the administration of siRNA.
    Inoue T; Sugimoto M; Sakurai T; Saito R; Futaki N; Hashimoto Y; Honma Y; Arai I; Nakaike S
    J Gene Med; 2007 Nov; 9(11):994-1001. PubMed ID: 17703497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide-based strategy for siRNA delivery into mammalian cells.
    Simeoni F; Morris MC; Heitz F; Divita G
    Methods Mol Biol; 2005; 309():251-60. PubMed ID: 15990405
    [No Abstract]   [Full Text] [Related]  

  • 38. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI.
    Kim SH; Jeong JH; Lee SH; Kim SW; Park TG
    Bioconjug Chem; 2008 Nov; 19(11):2156-62. PubMed ID: 18850733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNAi therapeutics: an update on delivery.
    Nguyen T; Menocal EM; Harborth J; Fruehauf JH
    Curr Opin Mol Ther; 2008 Apr; 10(2):158-67. PubMed ID: 18386228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical characterization of siRNA-peptide complexes.
    Law M; Jafari M; Chen P
    Biotechnol Prog; 2008; 24(4):957-63. PubMed ID: 19194904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.