These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18443295)

  • 1. Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system.
    Schmierer B; Tournier AL; Bates PA; Hill CS
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6608-13. PubMed ID: 18443295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads.
    Schmierer B; Hill CS
    Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Smad nucleocytoplasmic shuttling in living cells.
    Nicolás FJ; De Bosscher K; Schmierer B; Hill CS
    J Cell Sci; 2004 Aug; 117(Pt 18):4113-25. PubMed ID: 15280432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smad signaling dynamics: insights from a parsimonious model.
    Shankaran H; Wiley HS
    Sci Signal; 2008 Sep; 1(36):pe41. PubMed ID: 18780891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleocytoplasmic shuttling of Smad proteins.
    Hill CS
    Cell Res; 2009 Jan; 19(1):36-46. PubMed ID: 19114992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3.
    Dai F; Shen T; Li Z; Lin X; Feng XH
    EMBO Rep; 2011 Oct; 12(11):1175-81. PubMed ID: 21960005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity.
    Inman GJ; Nicolás FJ; Hill CS
    Mol Cell; 2002 Aug; 10(2):283-94. PubMed ID: 12191474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal.
    Varelas X; Sakuma R; Samavarchi-Tehrani P; Peerani R; Rao BM; Dembowy J; Yaffe MB; Zandstra PW; Wrana JL
    Nat Cell Biol; 2008 Jul; 10(7):837-48. PubMed ID: 18568018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavopiridol Inhibits TGF-
    Rostam MA; Shajimoon A; Kamato D; Mitra P; Piva TJ; Getachew R; Cao Y; Zheng W; Osman N; Little PJ
    J Pharmacol Exp Ther; 2018 Apr; 365(1):156-164. PubMed ID: 29438988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of dephosphorylation and nuclear export of Smads in TGF-beta signaling.
    Dai F; Duan X; Liang YY; Lin X; Feng XH
    Methods Mol Biol; 2010; 647():125-37. PubMed ID: 20694664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.
    Bu S; Kapanadze B; Hsu T; Trojanowska M
    J Biol Chem; 2008 Jul; 283(28):19593-602. PubMed ID: 18482992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of ligand-dependent nuclear accumulation of Smads in TGF-beta signaling.
    Chapnick DA; Liu X
    Methods Mol Biol; 2010; 647():95-111. PubMed ID: 20694662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel dominant negative Smad antagonists to TGFbeta signaling.
    Ho J; Chen H; Lebrun JJ
    Cell Signal; 2007 Jul; 19(7):1565-74. PubMed ID: 17360157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy.
    Li Y; Luo W; Yang W
    Biophys J; 2018 May; 114(9):2243-2251. PubMed ID: 29742417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells.
    Runyan CE; Schnaper HW; Poncelet AC
    J Biol Chem; 2005 Mar; 280(9):8300-8. PubMed ID: 15613484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Smad activities.
    Xu L
    Biochim Biophys Acta; 2006; 1759(11-12):503-13. PubMed ID: 17182123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modelling of Smad-mediated negative feedback and crosstalk in the TGF-β superfamily network.
    Nicklas D; Saiz L
    J R Soc Interface; 2013 Sep; 10(86):20130363. PubMed ID: 23804438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.