These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18443659)

  • 1. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.
    Leng H; Wang X; Ross RD; Niebur GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):68-75. PubMed ID: 18443659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography.
    Turnbull TL; Gargac JA; Niebur GL; Roeder RK
    J Biomech; 2011 Sep; 44(13):2395-400. PubMed ID: 21764062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue microdamage in bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):769-76. PubMed ID: 14986400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of dentinal cracks using contrast-enhanced micro-computed tomography.
    Landrigan MD; Flatley JC; Turnbull TL; Kruzic JJ; Ferracane JL; Hilton TJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):223-7. PubMed ID: 20129422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of trabecular bone microdamage by micro-computed tomography.
    Wang X; Masse DB; Leng H; Hess KP; Ross RD; Roeder RK; Niebur GL
    J Biomech; 2007; 40(15):3397-403. PubMed ID: 17588588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.
    Brock GR; Kim G; Ingraffea AR; Andrews JC; Pianetta P; van der Meulen MC
    PLoS One; 2013; 8(3):e57942. PubMed ID: 23472121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method.
    Caron R; Londono I; Seoud L; Villemure I
    J Mech Behav Biomed Mater; 2023 Jan; 137():105540. PubMed ID: 36327650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae.
    Atkins A; Burke M; Samiezadeh S; Akens MK; Hardisty M; Whyne CM
    Ann Biomed Eng; 2019 Apr; 47(4):980-989. PubMed ID: 30673956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdamage repair and remodeling requires mechanical loading.
    Waldorff EI; Christenson KB; Cooney LA; Goldstein SA
    J Bone Miner Res; 2010 Apr; 25(4):734-45. PubMed ID: 19821772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zoledronate reduces loading-induced microdamage in cortical ulna of ovariectomized rats.
    Ning B; Londono I; Laporte C; Villemure I
    J Mech Behav Biomed Mater; 2024 Feb; 150():106350. PubMed ID: 38171139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue damage-fracture mechanics interaction in cortical bone.
    Yeni YN; Fyhrie DP
    Bone; 2002 Mar; 30(3):509-14. PubMed ID: 11882466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.