BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18443678)

  • 41. Effect of culture conditions on the achievable taxonomic resolution of Raman spectroscopy disclosed by three Bacillus species.
    Hutsebaut D; Maquelin K; De Vos P; Vandenabeele P; Moens L; Puppels GJ
    Anal Chem; 2004 Nov; 76(21):6274-81. PubMed ID: 15516118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects.
    Gruden C; Skerlos S; Adriaens P
    FEMS Microbiol Ecol; 2004 Jul; 49(1):37-49. PubMed ID: 19712382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.
    Mlynáriková K; Samek O; Bernatová S; Růžička F; Ježek J; Hároniková A; Šiler M; Zemánek P; Holá V
    Sensors (Basel); 2015 Nov; 15(11):29635-47. PubMed ID: 26610516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cultivation-Free Raman Spectroscopic Investigations of Bacteria.
    Lorenz B; Wichmann C; Stöckel S; Rösch P; Popp J
    Trends Microbiol; 2017 May; 25(5):413-424. PubMed ID: 28188076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial communities in industrial environment.
    Maukonen J; Saarela M
    Curr Opin Microbiol; 2009 Jun; 12(3):238-43. PubMed ID: 19447068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung.
    Woo MA; Lee SM; Kim G; Baek J; Noh MS; Kim JE; Park SJ; Minai-Tehrani A; Park SC; Seo YT; Kim YK; Lee YS; Jeong DH; Cho MH
    Anal Chem; 2009 Feb; 81(3):1008-15. PubMed ID: 19117480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of water pathogens by Raman microspectroscopy.
    Kusić D; Kampe B; Rösch P; Popp J
    Water Res; 2014 Jan; 48():179-89. PubMed ID: 24103393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of flow cytometric methods for single-cell analysis in environmental microbiology.
    Czechowska K; Johnson DR; van der Meer JR
    Curr Opin Microbiol; 2008 Jun; 11(3):205-12. PubMed ID: 18562243
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy.
    Jun BH; Noh MS; Kim G; Kang H; Kim JH; Chung WJ; Kim MS; Kim YK; Cho MH; Jeong DH; Lee YS
    Anal Biochem; 2009 Aug; 391(1):24-30. PubMed ID: 19433055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single bacteria identification by Raman spectroscopy.
    Strola SA; Baritaux JC; Schultz E; Simon AC; Allier C; Espagnon I; Jary D; Dinten JM
    J Biomed Opt; 2014; 19(11):111610. PubMed ID: 25028774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SERS-melting: a new method for discriminating mutations in DNA sequences.
    Mahajan S; Richardson J; Brown T; Bartlett PN
    J Am Chem Soc; 2008 Nov; 130(46):15589-601. PubMed ID: 19006412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-enhanced Raman spectroscopy for identifying rock composition.
    Muniz-Miranda M; Gellini C; Bindi L
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):456-9. PubMed ID: 19201256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis.
    Smith WE
    Chem Soc Rev; 2008 May; 37(5):955-64. PubMed ID: 18443681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative SERRS for DNA sequence analysis.
    Graham D; Faulds K
    Chem Soc Rev; 2008 May; 37(5):1042-51. PubMed ID: 18443688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG; Zhao YP
    Langmuir; 2008 Dec; 24(24):14172-5. PubMed ID: 19053654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Guiding molecules with electrostatic forces in surface enhanced Raman spectroscopy.
    Lacharmoise PD; Le Ru EC; Etchegoin PG
    ACS Nano; 2009 Jan; 3(1):66-72. PubMed ID: 19206250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.
    Pearson B; Mills A; Tucker M; Gao S; McLandsborough L; He L
    Food Microbiol; 2018 Jun; 72():89-97. PubMed ID: 29407409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-organized hexagonal-nanopore SERS array.
    Choi D; Choi Y; Hong S; Kang T; Lee LP
    Small; 2010 Aug; 6(16):1741-4. PubMed ID: 20333691
    [No Abstract]   [Full Text] [Related]  

  • 60. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis.
    Virkler K; Lednev IK
    Anal Chem; 2009 Sep; 81(18):7773-7. PubMed ID: 19670872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.