BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18443846)

  • 1. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2008 Nov; 56(4):688-95. PubMed ID: 18443846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river.
    Pascoal C; Cássio F
    Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of microbial decomposers to drought in streams may depend on the environmental context.
    Duarte S; Mora-Gómez J; Romaní AM; Cássio F; Pascoal C
    Environ Microbiol Rep; 2017 Dec; 9(6):756-765. PubMed ID: 28914489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques.
    Duarte S; Pascoal C; Alves A; Correia A; Cássio F
    Microbiol Res; 2010 Jul; 165(5):351-62. PubMed ID: 19720514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain).
    Pérez J; Descals E; Pozo J
    Microb Ecol; 2012 Aug; 64(2):279-90. PubMed ID: 22354313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbes on decomposing litter in streams: entering on the leaf or colonizing in the water?
    Hayer M; Wymore AS; Hungate BA; Schwartz E; Koch BJ; Marks JC
    ISME J; 2022 Mar; 16(3):717-725. PubMed ID: 34580429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams.
    Gulis V; Suberkropp K; Rosemond AD
    Appl Environ Microbiol; 2008 Feb; 74(4):1094-101. PubMed ID: 18083884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?
    Pradhan A; Seena S; Pascoal C; Cássio F
    Microb Ecol; 2011 Jul; 62(1):58-68. PubMed ID: 21553058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?
    Jain A; Kumar S; Seena S
    Sci Total Environ; 2019 Feb; 653():930-937. PubMed ID: 30759618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers.
    Jabiol J; Cornut J; Tlili A; Gessner MO
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30102345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced with increasing time.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Microb Ecol; 2013 Nov; 66(4):763-72. PubMed ID: 23963224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired leaf litter processing in acidified streams : learning from microbial enzyme activities.
    Clivot H; Danger M; Pagnout C; Wagner P; Rousselle P; Poupin P; Guérold F
    Microb Ecol; 2013 Jan; 65(1):1-11. PubMed ID: 22903164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hidden Decomposers: the Role of Bacteria and Fungi in Recently Intermittent Alpine Streams Heterotrophic Pathways.
    Gruppuso L; Receveur JP; Fenoglio S; Bona F; Benbow ME
    Microb Ecol; 2023 Oct; 86(3):1499-1512. PubMed ID: 36646914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams.
    Duarte S; Pascoal C; Garabétian F; Cássio F; Charcosset JY
    Appl Environ Microbiol; 2009 Oct; 75(19):6211-21. PubMed ID: 19648371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream.
    Das M; Royer TV; Leff LG
    Appl Environ Microbiol; 2007 Feb; 73(3):756-67. PubMed ID: 17142366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.