These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18443870)

  • 1. Objective evaluation of expert and novice performance during robotic surgical training tasks.
    Judkins TN; Oleynikov D; Stergiou N
    Surg Endosc; 2009 Mar; 23(3):590-7. PubMed ID: 18443870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skills learning in robot-assisted surgery is benefited by task-specific augmented feedback.
    Vallabhajosula S; Judkins TN; Mukherjee M; Suh IH; Oleynikov D; Siu KC
    Surg Innov; 2013 Dec; 20(6):639-47. PubMed ID: 23575913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study.
    Kowalewski KF; Schmidt MW; Proctor T; Pohl M; Wennberg E; Karadza E; Romero P; Kenngott HG; Müller-Stich BP; Nickel F
    Surg Endosc; 2018 Apr; 32(4):1656-1667. PubMed ID: 29435749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time augmented feedback benefits robotic laparoscopic training.
    Judkins TN; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2006; 119():243-8. PubMed ID: 16404053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proficiency-based training for robotic surgery: construct validity, workload, and expert levels for nine inanimate exercises.
    Dulan G; Rege RV; Hogg DC; Gilberg-Fisher KM; Arain NA; Tesfay ST; Scott DJ
    Surg Endosc; 2012 Jun; 26(6):1516-21. PubMed ID: 22350226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which skills really matter? proving face, content, and construct validity for a commercial robotic simulator.
    Lyons C; Goldfarb D; Jones SL; Badhiwala N; Miles B; Link R; Dunkin BJ
    Surg Endosc; 2013 Jun; 27(6):2020-30. PubMed ID: 23389060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective assessment of proficiency with bimanual inanimate tasks in robotic laparoscopy.
    Narazaki K; Oleynikov D; Stergiou N
    J Laparoendosc Adv Surg Tech A; 2007 Feb; 17(1):47-52. PubMed ID: 17362179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.
    Duran C; Estrada S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2015 Feb; 61(2):535-41. PubMed ID: 25619579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of three standardized robotic surgery training methods.
    Hung AJ; Jayaratna IS; Teruya K; Desai MM; Gill IS; Goh AC
    BJU Int; 2013 Oct; 112(6):864-71. PubMed ID: 23470136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel drill set for the enhancement and assessment of robotic surgical performance.
    Ro CY; Toumpoulis IK; Ashton RC; Imielinska C; Jebara T; Shin SH; Zipkin JD; McGinty JJ; Todd GJ; Derose JJ
    Stud Health Technol Inform; 2005; 111():418-21. PubMed ID: 15718771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool.
    Ramos P; Montez J; Tripp A; Ng CK; Gill IS; Hung AJ
    BJU Int; 2014 May; 113(5):836-42. PubMed ID: 24224500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.
    Zihni A; Gerull WD; Cavallo JA; Ge T; Ray S; Chiu J; Brunt LM; Awad MM
    J Surg Res; 2018 Mar; 223():29-33. PubMed ID: 29433882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Assistance Confers Ambidexterity to Laparoscopic Surgeons.
    Choussein S; Srouji SS; Farland LV; Wietsma A; Missmer SA; Hollis M; Yu RN; Pozner CN; Gargiulo AR
    J Minim Invasive Gynecol; 2018 Jan; 25(1):76-83. PubMed ID: 28734971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D straight-stick laparoscopy versus 3D robotics for task performance in novice surgeons: a randomised crossover trial.
    Shakir F; Jan H; Kent A
    Surg Endosc; 2016 Dec; 30(12):5380-5387. PubMed ID: 27059971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training program for fundamental surgical skill in robotic laparoscopic surgery.
    Suh I; Mukherjee M; Oleynikov D; Siu KC
    Int J Med Robot; 2011 Sep; 7(3):327-33. PubMed ID: 21688381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-phase training on a virtual reality simulator improves technical performance in tele-robotic surgery.
    Balasundaram I; Aggarwal R; Darzi A
    Int J Med Robot; 2008 Jun; 4(2):139-45. PubMed ID: 18327876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a Visual-Spatial Secondary Task to Assess Automaticity in Laparoscopic Skills.
    Castillo R; Alvarado J; Moreno P; Billeke P; Martínez C; Varas J; Jarufe N
    J Surg Educ; 2018; 75(4):1001-1005. PubMed ID: 29287751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective measures for longitudinal assessment of robotic surgery training.
    Kumar R; Jog A; Vagvolgyi B; Nguyen H; Hager G; Chen CC; Yuh D
    J Thorac Cardiovasc Surg; 2012 Mar; 143(3):528-34. PubMed ID: 22172215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of laparoscopic and robotic skills among medical students: a randomized controlled trial.
    Orlando MS; Thomaier L; Abernethy MG; Chen CCG
    Surg Endosc; 2017 Aug; 31(8):3306-3312. PubMed ID: 28078455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.