These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18444013)

  • 1. Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli.
    Balásházy I; Hofmann W; Farkas A; Madas BG
    Inhal Toxicol; 2008 Apr; 20(6):611-21. PubMed ID: 18444013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravitational deposition in a rhythmically expanding and contracting alveolus.
    Haber S; Yitzhak D; Tsuda A
    J Appl Physiol (1985); 2003 Aug; 95(2):657-71. PubMed ID: 12639848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow and particle dispersion in a pulmonary alveolus--part II: effect of gravity on particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051010. PubMed ID: 20459211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alveolated duct structure on aerosol kinetics. II. Gravitational sedimentation and inertial impaction.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2510-6. PubMed ID: 7928877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectories and deposition sites of spherical particles moving inside rhythmically expanding alveoli under gravity-free conditions.
    Haber S; Yitzhak D; Tsuda A
    J Aerosol Med Pulm Drug Deliv; 2010 Dec; 23(6):405-13. PubMed ID: 20500094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051009. PubMed ID: 20459210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of alveolated duct structure on aerosol kinetics. I. Diffusional deposition in the absence of gravity.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2497-509. PubMed ID: 7928876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.
    Ma B; Darquenne C
    J Appl Physiol (1985); 2011 May; 110(5):1271-82. PubMed ID: 21330617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle transport onto human airway surfaces.
    Heyder J
    Eur J Respir Dis Suppl; 1982; 119():29-50. PubMed ID: 6954086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs.
    Nowak N; Kakade PP; Annapragada AV
    Ann Biomed Eng; 2003 Apr; 31(4):374-90. PubMed ID: 12723679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers.
    Xi J; Talaat M; Tanbour H; Talaat K
    Comput Math Methods Med; 2018; 2018():3649391. PubMed ID: 30356402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Simulation of the Airflow and Aerosol Particle Deposition in a Realistic Airway Model of a Healthy Adult.
    Ciloglu D; Karaman A
    J Pharm Sci; 2022 Nov; 111(11):3130-3140. PubMed ID: 35948158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanims of aerosol particle deposition in the Oro-pharynx under non-steady airflow.
    Sosnowski TR; Moskal A; Gradon L
    Ann Occup Hyg; 2007 Jan; 51(1):19-25. PubMed ID: 17041242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady-state airflow and particle deposition in a three-generation human lung geometry.
    Nazridoust K; Asgharian B
    Inhal Toxicol; 2008 Apr; 20(6):595-610. PubMed ID: 18444012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle dynamics and deposition in true-scale pulmonary acinar models.
    Fishler R; Hofemeier P; Etzion Y; Dubowski Y; Sznitman J
    Sci Rep; 2015 Sep; 5():14071. PubMed ID: 26358580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.
    Farkhadnia F; Gorji TB; Gorji-Bandpy M
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):43-58. PubMed ID: 26541595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung.
    Darquenne C; Paiva M
    J Appl Physiol (1985); 1996 Apr; 80(4):1401-14. PubMed ID: 8926273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.