These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18444629)

  • 1. Theoretical evidence for temperature-induced proton mobility in isolated lysine-rich polyalanines.
    Calvo F; Dugourd P
    J Phys Chem A; 2008 May; 112(20):4679-87. PubMed ID: 18444629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton transfer-induced conformational changes and melting in designed peptides in the gas phase.
    Kohtani M; Jones TC; Sudha R; Jarrold MF
    J Am Chem Soc; 2006 Jun; 128(22):7193-7. PubMed ID: 16734471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.
    Makowska J; Bagińska K; Kasprzykowski F; Vila JA; Jagielska A; Liwo A; Chmurzyński L; Scheraga HA
    Biopolymers; 2005; 80(2-3):214-24. PubMed ID: 15630705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton affinity and zwitterion stability: new results from infrared spectroscopy and theory of cationized lysine and analogues in the gas phase.
    Bush MF; Oomens J; Williams ER
    J Phys Chem A; 2009 Jan; 113(2):431-8. PubMed ID: 19128186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of solute-solvent proton exchange on polypeptide chain dynamics: a constant-pH molecular dynamics study.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2005 Jul; 109(28):13777-84. PubMed ID: 16852726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonation sites and conformations of peptides of glycine (Gly(1-5)H(+)) by IRMPD spectroscopy.
    Wu R; McMahon TB
    J Phys Chem B; 2009 Jun; 113(25):8767-75. PubMed ID: 19485314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformations of Gly(n)H+ and Ala(n)H+ peptides in the gas phase.
    Hudgins RR; Mao Y; Ratner MA; Jarrold MF
    Biophys J; 1999 Mar; 76(3):1591-7. PubMed ID: 10049339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopy and structure of photochemically protonated biomolecules in the gas phase: a noradrenaline analogue, lysine and alanyl alanine.
    Vaden TD; de Boer TS; MacLeod NA; Marzluff EM; Simons JP; Snoek LC
    Phys Chem Chem Phys; 2007 May; 9(20):2549-55. PubMed ID: 17508087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pH and temperature on the structural and thermodynamic character of alpha-syn12 peptide in aqueous solution.
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2010 Dec; 28(3):343-53. PubMed ID: 20919750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy.
    Wu R; McMahon TB
    Chemphyschem; 2008 Dec; 9(18):2826-35. PubMed ID: 18846594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase.
    Vaden TD; de Boer TS; Simons JP; Snoek LC; Suhai S; Paizs B
    J Phys Chem A; 2008 May; 112(20):4608-16. PubMed ID: 18444632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and energetic effects in the molecular recognition of amino acids by 18-crown-6.
    Chen Y; Rodgers MT
    J Am Chem Soc; 2012 Apr; 134(13):5863-75. PubMed ID: 22400976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio quantum chemical study on the mechanism of exceptional behavior of lysine for ion yields in MALDI--role of vibrational entropic contribution in thermally averaged proton affinities.
    Hatakeyama M; Tachikawa M
    J Mass Spectrom; 2011 Apr; 46(4):376-82. PubMed ID: 21438087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential hydration of small protonated peptides.
    Liu D; Wyttenbach T; Barran PE; Bowers MT
    J Am Chem Soc; 2003 Jul; 125(28):8458-64. PubMed ID: 12848551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton.
    Polfer NC; Oomens J; Suhai S; Paizs B
    J Am Chem Soc; 2007 May; 129(18):5887-97. PubMed ID: 17428052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyglycine conformational analysis: calculated vs experimental gas-phase basicities and proton affinities.
    Chung-Phillips A
    J Phys Chem A; 2005 Jul; 109(26):5917-32. PubMed ID: 16833926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum description of the proton movement in an idealized NHN+ bridge.
    Lankau T; Yu CH
    Phys Chem Chem Phys; 2011 Jul; 13(28):12758-69. PubMed ID: 21691635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions.
    Lee S; Chung G; Kim J; Oh HB
    Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water adsorption at two unsolvated peptides with a protonated lysine residue: from self-solvation to solvation.
    Chutia S; Rossi M; Blum V
    J Phys Chem B; 2012 Dec; 116(51):14788-804. PubMed ID: 23171405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.