BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18444689)

  • 21. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.
    Lee JW; Hwang KJ; Park DW; Park KH; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach.
    Yip CT; Huang H; Zhou L; Xie K; Wang Y; Feng T; Li J; Tam WY
    Adv Mater; 2011 Dec; 23(47):5624-8. PubMed ID: 22102221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells.
    De Angelis F; Fantacci S; Selloni A; Grätzel M; Nazeeruddin MK
    Nano Lett; 2007 Oct; 7(10):3189-95. PubMed ID: 17854229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-assisted anodized TiO₂ nanotube arrays.
    Smith YR; Sarma B; Mohanty SK; Misra M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5883-90. PubMed ID: 23078074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells.
    Zhu K; Vinzant TB; Neale NR; Frank AJ
    Nano Lett; 2007 Dec; 7(12):3739-46. PubMed ID: 17983250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.
    Lee H; Wang M; Chen P; Gamelin DR; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Nano Lett; 2009 Dec; 9(12):4221-7. PubMed ID: 19891465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells.
    Nath NC; Sarker S; Ahammad AJ; Lee JJ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4333-8. PubMed ID: 22336885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2.
    Pavasupree S; Ngamsinlapasathian S; Suzuki Y; Yoshikawa S
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3685-92. PubMed ID: 17256316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes.
    Wang D; Liu Y; Wang C; Zhou F; Liu W
    ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants.
    Sul YT
    Int J Nanomedicine; 2010 Apr; 5():87-100. PubMed ID: 20463928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.
    Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices.
    Dang X; Yi H; Ham MH; Qi J; Yun DS; Ladewski R; Strano MS; Hammond PT; Belcher AM
    Nat Nanotechnol; 2011 Apr; 6(6):377-84. PubMed ID: 21516089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-walled carbon nanotube solar cells.
    Wei J; Jia Y; Shu Q; Gu Z; Wang K; Zhuang D; Zhang G; Wang Z; Luo J; Cao A; Wu D
    Nano Lett; 2007 Aug; 7(8):2317-21. PubMed ID: 17608444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid solar cells from P3HT and silicon nanocrystals.
    Liu CY; Holman ZC; Kortshagen UR
    Nano Lett; 2009 Jan; 9(1):449-52. PubMed ID: 19113966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-organized TiO2 nanotube layers as highly efficient photocatalysts.
    Macak JM; Zlamal M; Krysa J; Schmuki P
    Small; 2007 Feb; 3(2):300-4. PubMed ID: 17230591
    [No Abstract]   [Full Text] [Related]  

  • 38. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TiO₂ nanotip arrays: anodic fabrication and field-emission properties.
    Liang J; Zhang G
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6053-61. PubMed ID: 23106725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.