BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18444689)

  • 61. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.
    Wang J; Lin Z
    Chem Asian J; 2012 Dec; 7(12):2754-62. PubMed ID: 22711337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells.
    Unger EL; Spadavecchia F; Nonomura K; Palmgren P; Cappelletti G; Hagfeldt A; Johansson EM; Boschloo G
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5997-6004. PubMed ID: 23066994
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y
    Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells.
    Wu WQ; Rao HS; Xu YF; Wang YF; Su CY; Kuang DB
    Sci Rep; 2013; 3():1892. PubMed ID: 23715529
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optical switching of porphyrin-coated silicon nanowire field effect transistors.
    Winkelmann CB; Ionica I; Chevalier X; Royal G; Bucher C; Bouchiat V
    Nano Lett; 2007 Jun; 7(6):1454-8. PubMed ID: 17497816
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Self-assembled metallic nanowires on a dielectric support: Pd on rutile TiO2(110).
    Humphrey DS; Cabailh G; Pang CL; Muryn CA; Cavill SA; Marchetto H; Potenza A; Dhesi SS; Thornton G
    Nano Lett; 2009 Jan; 9(1):155-9. PubMed ID: 19113893
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells.
    Kuang D; Klein C; Snaith HJ; Moser JE; Humphry-Baker R; Comte P; Zakeeruddin SM; Grätzel M
    Nano Lett; 2006 Apr; 6(4):769-73. PubMed ID: 16608281
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes.
    Ye M; Xin X; Lin C; Lin Z
    Nano Lett; 2011 Aug; 11(8):3214-20. PubMed ID: 21728278
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Creating a uniform distribution of fullerene C60 nanorods in a polymer matrix and its photovoltaic applications.
    Lu G; Li L; Yang X
    Small; 2008 May; 4(5):601-6. PubMed ID: 18446798
    [No Abstract]   [Full Text] [Related]  

  • 71. Application of in situ measurement of photo-induced variations in electron work function for in-depth understanding of the photocatalytic activity of TiO2 nanotubes.
    Fu N; Tang X; Li D
    Nanotechnology; 2012 Jul; 23(27):275704. PubMed ID: 22705558
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functionalization of SnO₂ photoanode through Mg-doping and TiO₂-coating to synergically boost dye-sensitized solar cell performance.
    Pang H; Yang H; Guo CX; Li CM
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6261-5. PubMed ID: 23072276
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-efficiency dye-sensitized solar cell with three-dimensional photoanode.
    Tétreault N; Arsenault E; Heiniger LP; Soheilnia N; Brillet J; Moehl T; Zakeeruddin S; Ozin GA; Grätzel M
    Nano Lett; 2011 Nov; 11(11):4579-84. PubMed ID: 21961905
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation.
    Chi CF; Liau SY; Lee YL
    Nanotechnology; 2010 Jan; 21(2):025202. PubMed ID: 19955606
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature.
    Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y
    Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Unexpected adsorption of oxygen on TiO2 nanotube arrays: influence of crystal structure.
    Funk S; Hokkanen B; Burghaus U; Ghicov A; Schmuki P
    Nano Lett; 2007 Apr; 7(4):1091-4. PubMed ID: 17375963
    [TBL] [Abstract][Full Text] [Related]  

  • 77. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.
    Nair AS; Zhu P; Babu VJ; Yang S; Krishnamoorthy T; Murugan R; Peng S; Ramakrishna S
    Langmuir; 2012 Apr; 28(15):6202-6. PubMed ID: 22469013
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Catalytic growth of single-crystalline V(2)O(5) nanowire arrays.
    Velazquez JM; Banerjee S
    Small; 2009 May; 5(9):1025-9. PubMed ID: 19235798
    [No Abstract]   [Full Text] [Related]  

  • 79. Secondary nanotube growth on aligned carbon nanofibre arrays for superior field emission.
    Watts PC; Lyth SM; Henley SJ; Silva SR
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2147-50. PubMed ID: 18572626
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis.
    Xin X; Wang J; Han W; Ye M; Lin Z
    Nanoscale; 2012 Feb; 4(3):964-9. PubMed ID: 22193983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.