These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18444689)

  • 101. Investigation on the dynamics of electron transport and recombination in TiO2 nanotube/nanoparticle composite electrodes for dye-sensitized solar cells.
    Mohammadpour R; Iraji zad A; Hagfeldt A; Boschloo G
    Phys Chem Chem Phys; 2011 Dec; 13(48):21487-91. PubMed ID: 22051895
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Photovoltaic measurements in single-nanowire silicon solar cells.
    Kelzenberg MD; Turner-Evans DB; Kayes BM; Filler MA; Putnam MC; Lewis NS; Atwater HA
    Nano Lett; 2008 Feb; 8(2):710-4. PubMed ID: 18269257
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices.
    Yu Z; McKnight TE; Ericson MN; Melechko AV; Simpson ML; Morrison B
    Nano Lett; 2007 Aug; 7(8):2188-95. PubMed ID: 17604402
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells.
    Kang TS; Smith AP; Taylor BE; Durstock MF
    Nano Lett; 2009 Feb; 9(2):601-6. PubMed ID: 19166289
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends.
    Meng S; Kaxiras E
    Nano Lett; 2010 Apr; 10(4):1238-47. PubMed ID: 20353199
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO₂ nanotube arrays.
    Liao Y; Brame J; Que W; Xiu Z; Xie H; Li Q; Fabian M; Alvarez PJ
    J Hazard Mater; 2013 Sep; 260():434-41. PubMed ID: 23811364
    [TBL] [Abstract][Full Text] [Related]  

  • 107. P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation.
    Mor GK; Varghese OK; Wilke RH; Sharma S; Shankar K; Latempa TJ; Choi KS; Grimes CA
    Nano Lett; 2008 Jul; 8(7):1906-11. PubMed ID: 18540655
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells.
    Im SH; Lim CS; Chang JA; Lee YH; Maiti N; Kim HJ; Nazeeruddin MK; Grätzel M; Seok SI
    Nano Lett; 2011 Nov; 11(11):4789-93. PubMed ID: 21961842
    [TBL] [Abstract][Full Text] [Related]  

  • 109. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials.
    Yum JH; Baranoff E; Kessler F; Moehl T; Ahmad S; Bessho T; Marchioro A; Ghadiri E; Moser JE; Yi C; Nazeeruddin MK; Grätzel M
    Nat Commun; 2012 Jan; 3():631. PubMed ID: 22252555
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics.
    Schmidt-Mende L; Kroeze JE; Durrant JR; Nazeeruddin MK; Grätzel M
    Nano Lett; 2005 Jul; 5(7):1315-20. PubMed ID: 16178230
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells.
    Zhuge F; Qiu J; Li X; Gao X; Gan X; Yu W
    Adv Mater; 2011 Mar; 23(11):1330-4. PubMed ID: 21400591
    [No Abstract]   [Full Text] [Related]  

  • 112. Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells.
    Meen TH; Jhuo YT; Chao SM; Lin NY; Ji LW; Tsai JK; Wu TC; Chen WR; Water W; Huang CJ
    Nanoscale Res Lett; 2012 Oct; 7(1):579. PubMed ID: 23092158
    [TBL] [Abstract][Full Text] [Related]  

  • 113. A large-area light-weight dye-sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors.
    Wu J; Xiao Y; Tang Q; Yue G; Lin J; Huang M; Huang Y; Fan L; Lan Z; Yin S; Sato T
    Adv Mater; 2012 Apr; 24(14):1884-8. PubMed ID: 22407518
    [TBL] [Abstract][Full Text] [Related]  

  • 114. A Fractional Diffusion Model for Dye-Sensitized Solar Cells.
    Maldon B; Thamwattana N
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32605203
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films.
    Bindl DJ; Wu MY; Prehn FC; Arnold MS
    Nano Lett; 2011 Feb; 11(2):455-60. PubMed ID: 21166422
    [TBL] [Abstract][Full Text] [Related]  

  • 116. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.
    Kim WR; Park H; Choi WY
    Nanoscale Res Lett; 2014 Feb; 9(1):93. PubMed ID: 24565201
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells.
    Ye M; Zheng D; Lv M; Chen C; Lin C; Lin Z
    Adv Mater; 2013 Jun; 25(22):3039-44. PubMed ID: 23450829
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces.
    Park J; Bauer S; Schmuki P; von der Mark K
    Nano Lett; 2009 Sep; 9(9):3157-64. PubMed ID: 19653637
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Branched TiO₂ nanorods for photoelectrochemical hydrogen production.
    Cho IS; Chen Z; Forman AJ; Kim DR; Rao PM; Jaramillo TF; Zheng X
    Nano Lett; 2011 Nov; 11(11):4978-84. PubMed ID: 21999403
    [TBL] [Abstract][Full Text] [Related]  

  • 120. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays.
    Guo W; Xue X; Wang S; Lin C; Wang ZL
    Nano Lett; 2012 May; 12(5):2520-3. PubMed ID: 22519631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.