These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18445150)

  • 1. AFM for diagnosis of nanocrystallization of steels in hardening processes.
    Pompeo G; Girasole M; Longo G; Cricenti A; Bailo D; Ronci F; Maras A; Serracino M; Moretti PF
    J Microsc; 2008 May; 230(Pt 2):218-23. PubMed ID: 18445150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Residual particle free surfaces after shot peening in modular hip arthroplasty are feasible].
    Schuh A; Uter W; Holzwarth U; Kachler W; Göske J; Raab B; Mayerhöfer T
    Zentralbl Chir; 2005 Dec; 130(6):576-9. PubMed ID: 16382407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Numerical Approach for Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot Peening.
    Zhou F; Jiang W; Du Y; Xiao C
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically induced annealing of stainless-steel surfaces.
    Burstein GT; Hutchings IM; Sasaki K
    Nature; 2000 Oct; 407(6806):885-7. PubMed ID: 11057662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ultrasonic Shot Peening on the Microstructure of Austenitic Stainless Steel 316 and Super Duplex Stainless Steel UNS S32750.
    Liu S; Shin K
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6904-6911. PubMed ID: 32604534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM capabilities in characterization of particles and surfaces: from angstroms to microns.
    Starostina N; Brodsky M; Prikhodko S; Hoo CM; Mecartney ML; West P
    J Cosmet Sci; 2008; 59(3):225-32. PubMed ID: 18528590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable-force tapping atomic force microscopy as a tool in the characterization of organic devices.
    Iwasiewicz-Wabnig A; Shin JH; Xiao S; Edman L
    Ultramicroscopy; 2007 Oct; 107(10-11):1078-85. PubMed ID: 17560029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural changes within similar coronary stents produced from two different austenitic steels.
    Weiss S; Meissner A; Fischer A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):210-6. PubMed ID: 19627825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of atomic force microscopy as a diagnostic tool to identify orthopoxvirus.
    Trindade GS; Vilela JM; Ferreira JM; Aguiar PH; Leite JA; Guedes MI; Lobato ZI; Madureira MC; da Silva MI; da Fonseca FG; Kroon EG; Andrade MS
    J Virol Methods; 2007 May; 141(2):198-204. PubMed ID: 17239966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ atomic force microscopy (AFM) imaging: influence of AFM probe geometry on diffusion to microscopic surfaces.
    Burt DP; Wilson NR; Janus U; Macpherson JV; Unwin PR
    Langmuir; 2008 Nov; 24(22):12867-76. PubMed ID: 18558780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative processes for electropolishing of medical devices made of stainless steels.
    Eliaz N; Nissan O
    J Biomed Mater Res A; 2007 Nov; 83(2):546-57. PubMed ID: 17567863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ study of nano-cracking in multilayered magnetic tapes under monotonic and fatigue loading using an AFM.
    Tambe NS; Bhushan B
    Ultramicroscopy; 2004 Aug; 100(3-4):359-73. PubMed ID: 15231330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy (AFM).
    Trache A; Meininger GA
    Curr Protoc Microbiol; 2008 Feb; Chapter 2():Unit 2C.2. PubMed ID: 18770536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.
    Li JR; Lewandowski BR; Xu S; Garno JC
    Anal Chem; 2009 Jun; 81(12):4792-802. PubMed ID: 19453164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and magnetic behaviour of soft magnetic Finemet-type ribbons.
    Iturriza N; Fernández L; Chizhik A; Vara G; Pierna AR; del Val JJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2912-22. PubMed ID: 18681027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM phase imaging of soft-hydrated samples: a versatile tool to complete the chemical-physical study of liposomes.
    Ruozi B; Tosi G; Tonelli M; Bondioli L; Mucci A; Forni F; Vandelli MA
    J Liposome Res; 2009; 19(1):59-67. PubMed ID: 19515008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy characterization of the chemical contrast of nanoscale patterns fabricated by electron beam lithography on polyethylene glycol oxide thin films.
    Sirghi L; Bretagnol F; Mornet S; Sasaki T; Gilliland D; Colpo P; Rossi F
    Ultramicroscopy; 2009 Feb; 109(3):222-9. PubMed ID: 19121899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic force spectroscopy on insulating surfaces: the effect of capacitive interaction.
    Takagi A; Yamada F; Matsumoto T; Kawai T
    Nanotechnology; 2009 Sep; 20(36):365501. PubMed ID: 19687559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening.
    Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K
    Scanning; 2017; 2017():2189614. PubMed ID: 29379582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.