These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18445480)

  • 1. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum.
    Kino K; Nakazawa Y; Yagasaki M
    Biochem Biophys Res Commun; 2008 Jul; 371(3):536-40. PubMed ID: 18445480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Amino acid dipeptide production utilizing D-alanine-D-alanine ligases with novel substrate specificity.
    Sato M; Kirimura K; Kino K
    J Biosci Bioeng; 2005 Jun; 99(6):623-8. PubMed ID: 16233841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and application of dipeptides; current status and perspectives.
    Yagasaki M; Hashimoto S
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):13-22. PubMed ID: 18795289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel l-amino acid ligase from bacillus licheniformis.
    Kino K; Noguchi A; Nakazawa Y; Yagasaki M
    J Biosci Bioeng; 2008 Sep; 106(3):313-5. PubMed ID: 18930013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a novel L-amino acid ligase from Photorhabdus luminescens subsp. laumondii TT01.
    Kino K; Noguchi A; Arai T; Yagasaki M
    J Biosci Bioeng; 2010 Jul; 110(1):39-41. PubMed ID: 20541113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin.
    Kino K; Kotanaka Y; Arai T; Yagasaki M
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):901-7. PubMed ID: 19352016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ralfuranone biosynthesis in Ralstonia solanacearum suggests functional divergence in the quinone synthetase family of enzymes.
    Wackler B; Schneider P; Jacobs JM; Pauly J; Allen C; Nett M; Hoffmeister D
    Chem Biol; 2011 Mar; 18(3):354-60. PubMed ID: 21439480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single mutation alters the substrate specificity of L-amino acid ligase.
    Tsuda T; Asami M; Koguchi Y; Kojima S
    Biochemistry; 2014 Apr; 53(16):2650-60. PubMed ID: 24702628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of L-amino-acid ligase from Bacillus licheniformis.
    Suzuki M; Takahashi Y; Noguchi A; Arai T; Yagasaki M; Kino K; Saito J
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1535-40. PubMed ID: 23090402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase.
    Tabata K; Hashimoto S
    Appl Environ Microbiol; 2007 Oct; 73(20):6378-85. PubMed ID: 17720844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.
    McCoy AJ; Maurelli AT
    Mol Microbiol; 2005 Jul; 57(1):41-52. PubMed ID: 15948948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus.
    Arai T; Noguchi A; Takano E; Kino K
    J Biosci Bioeng; 2013 Apr; 115(4):382-7. PubMed ID: 23218487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective production of Pro-Gly by mutagenesis of l-amino acid ligase.
    Kino H; Nakajima S; Arai T; Kino K
    J Biosci Bioeng; 2016 Aug; 122(2):155-9. PubMed ID: 27017332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase: production of dipeptides containing valine residue at its C-terminus.
    Shiau CY; Liu YT
    Biochem Biophys Res Commun; 2002 Apr; 292(4):794-8. PubMed ID: 11944883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis.
    Abe T; Kobayashi K; Kawamura S; Sakaguchi T; Shiiba K; Kobayashi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):1-10. PubMed ID: 29899192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cyanophycin synthetase from Thermosynechococcus elongatus BP-1 catalyzes primer-independent cyanophycin synthesis.
    Arai T; Kino K
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):69-78. PubMed ID: 18679674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of putative tryptophan monooxygenase from Ralstonia solanacearum [corrected].
    Kurosawa N; Hirata T; Suzuki H
    J Biochem; 2009 Jul; 146(1):23-32. PubMed ID: 19304791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel L-amino acid ligase is encoded by a gene in the phaseolotoxin biosynthetic gene cluster from Pseudomonas syringae pv. phaseolicola 1448A.
    Arai T; Kino K
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):3048-50. PubMed ID: 18997422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli.
    Hayashi M; Tabata K; Yagasaki M; Yonetani Y
    FEMS Microbiol Lett; 2010 Mar; 304(1):12-9. PubMed ID: 20067529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides.
    Arai T; Arimura Y; Ishikura S; Kino K
    Appl Environ Microbiol; 2013 Aug; 79(16):5023-9. PubMed ID: 23770908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.