These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 18445629)
41. Structure of a Nudix protein from Pyrobaculum aerophilum reveals a dimer with two intersubunit beta-sheets. Wang S; Mura C; Sawaya MR; Cascio D; Eisenberg D Acta Crystallogr D Biol Crystallogr; 2002 Apr; 58(Pt 4):571-8. PubMed ID: 11914479 [TBL] [Abstract][Full Text] [Related]
42. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Meinhart A; Cramer P Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417 [TBL] [Abstract][Full Text] [Related]
43. The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site. Trésaugues L; Stenmark P; Schüler H; Flodin S; Welin M; Nyman T; Hammarström M; Moche M; Gräslund S; Nordlund P Proteins; 2008 Dec; 73(4):1047-52. PubMed ID: 18767156 [No Abstract] [Full Text] [Related]
44. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863 [TBL] [Abstract][Full Text] [Related]
45. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Takagaki Y; Manley JL Nature; 1994 Dec; 372(6505):471-4. PubMed ID: 7984242 [TBL] [Abstract][Full Text] [Related]
46. A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Wang C; Zhu Y; Bao H; Jiang Y; Xu C; Wu J; Shi Y Nucleic Acids Res; 2016 Jan; 44(2):969-82. PubMed ID: 26673708 [TBL] [Abstract][Full Text] [Related]
47. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA. Chen J; Moore C Mol Cell Biol; 1992 Aug; 12(8):3470-81. PubMed ID: 1352851 [TBL] [Abstract][Full Text] [Related]
48. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. Iyer LM; Koonin EV; Aravind L BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. Slade DJ; Lovelace LL; Chruszcz M; Minor W; Lebioda L; Sodetz JM J Mol Biol; 2008 May; 379(2):331-42. PubMed ID: 18440555 [TBL] [Abstract][Full Text] [Related]
50. Crystal structures of U8 snoRNA decapping nudix hydrolase, X29, and its metal and cap complexes. Scarsdale JN; Peculis BA; Wright HT Structure; 2006 Feb; 14(2):331-43. PubMed ID: 16472752 [TBL] [Abstract][Full Text] [Related]
51. The C terminus of Pcf11 forms a novel zinc-finger structure that plays an essential role in mRNA 3'-end processing. Yang F; Hsu P; Lee SD; Yang W; Hoskinson D; Xu W; Moore C; Varani G RNA; 2017 Jan; 23(1):98-107. PubMed ID: 27780845 [TBL] [Abstract][Full Text] [Related]
52. Mpe1, a zinc knuckle protein, is an essential component of yeast cleavage and polyadenylation factor required for the cleavage and polyadenylation of mRNA. Vo LT; Minet M; Schmitter JM; Lacroute F; Wyers F Mol Cell Biol; 2001 Dec; 21(24):8346-56. PubMed ID: 11713271 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue. Zhang Y; Zhang M; Zhang Y Biochem J; 2011 Mar; 434(3):435-44. PubMed ID: 21204787 [TBL] [Abstract][Full Text] [Related]
54. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J Biochemistry; 1996 Oct; 35(39):12742-61. PubMed ID: 8841118 [TBL] [Abstract][Full Text] [Related]
55. Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3' ends. Kessler MM; Zhao J; Moore CL J Biol Chem; 1996 Oct; 271(43):27167-75. PubMed ID: 8900210 [TBL] [Abstract][Full Text] [Related]
56. A history of poly A sequences: from formation to factors to function. Edmonds M Prog Nucleic Acid Res Mol Biol; 2002; 71():285-389. PubMed ID: 12102557 [TBL] [Abstract][Full Text] [Related]
57. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily. Hou WT; Li WZ; Chen Y; Jiang YL; Zhou CZ J Mol Biol; 2013 Aug; 425(15):2687-98. PubMed ID: 23628156 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. Martin G; Gruber AR; Keller W; Zavolan M Cell Rep; 2012 Jun; 1(6):753-63. PubMed ID: 22813749 [TBL] [Abstract][Full Text] [Related]
59. Characterization of a Drosophila homologue of the 160-kDa subunit of the cleavage and polyadenylation specificity factor CPSF. Salinas CA; Sinclair DA; O'Hare K; Brock HW Mol Gen Genet; 1998 Apr; 257(6):672-80. PubMed ID: 9604891 [TBL] [Abstract][Full Text] [Related]
60. Structural insights into the specific recognition of DSR by the YTH domain containing protein Mmi1. Wu B; Xu J; Su S; Liu H; Gan J; Ma J Biochem Biophys Res Commun; 2017 Sep; 491(2):310-316. PubMed ID: 28735863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]