BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 18445655)

  • 1. Assembly mechanism of recombinant spider silk proteins.
    Rammensee S; Slotta U; Scheibel T; Bausch AR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6590-5. PubMed ID: 18445655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.
    Kuwana Y; Sezutsu H; Nakajima K; Tamada Y; Kojima K
    PLoS One; 2014; 9(8):e105325. PubMed ID: 25162624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip.
    Peng Q; Zhang Y; Lu L; Shao H; Qin K; Hu X; Xia X
    Sci Rep; 2016 Nov; 6():36473. PubMed ID: 27819339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation.
    Ittah S; Cohen S; Garty S; Cohn D; Gat U
    Biomacromolecules; 2006 Jun; 7(6):1790-5. PubMed ID: 16768399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Phosphate on the Molecular Properties, Interactions, and Assembly of Engineered Spider Silk Proteins.
    Yin Y; Griffo A; Gutiérrez Cruz A; Hähl H; Jacobs K; Linder MB
    Biomacromolecules; 2024 Jul; 25(7):3990-4000. PubMed ID: 38916967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion and seed dependent fibril assembly of a spidroin core domain.
    Humenik M; Smith AM; Arndt S; Scheibel T
    J Struct Biol; 2015 Aug; 191(2):130-8. PubMed ID: 26123261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled hydrogel formation of a recombinant spider silk protein.
    Schacht K; Scheibel T
    Biomacromolecules; 2011 Jul; 12(7):2488-95. PubMed ID: 21612299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel assembly properties of recombinant spider dragline silk proteins.
    Huemmerich D; Scheibel T; Vollrath F; Cohen S; Gat U; Ittah S
    Curr Biol; 2004 Nov; 14(22):2070-4. PubMed ID: 15556872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary structure elements of spider dragline silks and their contribution to protein solubility.
    Huemmerich D; Helsen CW; Quedzuweit S; Oschmann J; Rudolph R; Scheibel T
    Biochemistry; 2004 Oct; 43(42):13604-12. PubMed ID: 15491167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.
    Humenik M; Pawar K; Scheibel T
    Adv Exp Med Biol; 2019; 1174():187-221. PubMed ID: 31713200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replicating shear-mediated self-assembly of spider silk through microfluidics.
    Chen J; Tsuchida A; Malay AD; Tsuchiya K; Masunaga H; Tsuji Y; Kuzumoto M; Urayama K; Shintaku H; Numata K
    Nat Commun; 2024 Jan; 15(1):527. PubMed ID: 38225234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of spider silk.
    Hu X; Vasanthavada K; Kohler K; McNary S; Moore AM; Vierra CA
    Cell Mol Life Sci; 2006 Sep; 63(17):1986-99. PubMed ID: 16819558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins.
    Lang G; Jokisch S; Scheibel T
    J Vis Exp; 2013 May; (75):e50492. PubMed ID: 23685883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).
    Pouchkina-Stantcheva NN; McQueen-Mason SJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):371-6. PubMed ID: 15325337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.