These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. Aniksztejn L; Ben-Ari Y J Neurophysiol; 1995 Dec; 74(6):2349-57. PubMed ID: 8747197 [TBL] [Abstract][Full Text] [Related]
23. Memantine increases brain production of kynurenic acid via protein kinase A-dependent mechanism. Kloc R; Luchowska E; Wielosz M; Owe-Larsson B; Urbanska EM Neurosci Lett; 2008 Apr; 435(2):169-73. PubMed ID: 18346850 [TBL] [Abstract][Full Text] [Related]
24. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. Ganong AH; Cotman CW J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215 [TBL] [Abstract][Full Text] [Related]
25. Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus. Zhang X; Fogel R J Neurophysiol; 2002 Jul; 88(1):49-63. PubMed ID: 12091532 [TBL] [Abstract][Full Text] [Related]
26. Subthreshold contribution of N-methyl-d-aspartate receptors to long-term potentiation induced by low-frequency pairing in rat hippocampal CA1 pyramidal cells. Krasteniakov NV; Martina M; Bergeron R Neuroscience; 2004; 126(1):83-94. PubMed ID: 15145075 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and biological effects of some kynurenic acid analogs. Nagy K; Plangár I; Tuka B; Gellért L; Varga D; Demeter I; Farkas T; Kis Z; Marosi M; Zádori D; Klivényi P; Fülöp F; Szatmári I; Vécsei L; Toldi J Bioorg Med Chem; 2011 Dec; 19(24):7590-6. PubMed ID: 22079867 [TBL] [Abstract][Full Text] [Related]
28. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia. Iaccarino HF; Suckow RF; Xie S; Bucci DJ Schizophr Res; 2013 Nov; 150(2-3):392-7. PubMed ID: 24091034 [TBL] [Abstract][Full Text] [Related]
29. Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Linderholm KR; Andersson A; Olsson S; Olsson E; Snodgrass R; Engberg G; Erhardt S Neuropharmacology; 2007 Dec; 53(8):918-24. PubMed ID: 17959203 [TBL] [Abstract][Full Text] [Related]
30. The impaired long-term potentiation in the CA1 field of the hippocampus of cognitive deficient microencephalic rats is restored by D-serine. Ramakers GM; Urban IJ; De Graan PN; Di Luca M; Cattabeni F; Gispen WH Neuroscience; 1993 May; 54(1):49-60. PubMed ID: 8100048 [TBL] [Abstract][Full Text] [Related]
31. Optical monitoring of glutaminergic excitatory postsynaptic potentials from the early developing embryonic chick brain stem. Momose-Sato Y; Sakai T; Hirota A; Sato K; Kamino K Ann N Y Acad Sci; 1993 Dec; 707():454-7. PubMed ID: 9137593 [No Abstract] [Full Text] [Related]
32. Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid. Harris CA; Miranda AF; Tanguay JJ; Boegman RJ; Beninger RJ; Jhamandas K Br J Pharmacol; 1998 May; 124(2):391-9. PubMed ID: 9641558 [TBL] [Abstract][Full Text] [Related]
33. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Fatokun AA; Smith RA; Stone TW Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115 [TBL] [Abstract][Full Text] [Related]
34. Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus. Grover LM; Yan C J Neurophysiol; 1999 Dec; 82(6):2956-69. PubMed ID: 10601432 [TBL] [Abstract][Full Text] [Related]
35. Reciprocal inhibition of the AMPA and NMDA components of excitatory postsynaptic potentials in field CA1 of the rat hippocampus in vitro. Bazhenov AV; Kleshchevnikov AM Neurosci Behav Physiol; 1999; 29(6):719-25. PubMed ID: 10651331 [TBL] [Abstract][Full Text] [Related]
36. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Stone TW Trends Pharmacol Sci; 2000 Apr; 21(4):149-54. PubMed ID: 10740291 [TBL] [Abstract][Full Text] [Related]
37. A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. Clayton DA; Mesches MH; Alvarez E; Bickford PC; Browning MD J Neurosci; 2002 May; 22(9):3628-37. PubMed ID: 11978838 [TBL] [Abstract][Full Text] [Related]
38. Elevated levels of kynurenic acid change the dopaminergic response to amphetamine: implications for schizophrenia. Olsson SK; Andersson AS; Linderholm KR; Holtze M; Nilsson-Todd LK; Schwieler L; Olsson E; Larsson K; Engberg G; Erhardt S Int J Neuropsychopharmacol; 2009 May; 12(4):501-12. PubMed ID: 18796185 [TBL] [Abstract][Full Text] [Related]
39. Suppression of ictal-like activity by kynurenic acid does not correlate with its efficacy as an NMDA receptor antagonist. Brady RJ; Swann JW Epilepsy Res; 1988; 2(4):232-8. PubMed ID: 2904365 [TBL] [Abstract][Full Text] [Related]
40. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis: III. The action of kynurenic acid and glutamic acid diethylester. Velísek L; Roztocilová L; Kusá R; Mares P Brain Res Bull; 1995; 38(6):525-9. PubMed ID: 8590073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]