BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 18446284)

  • 1. Calculation of absolute protein-ligand binding constants with the molecular dynamics free energy perturbation method.
    Woo HJ
    Methods Mol Biol; 2008; 443():109-20. PubMed ID: 18446284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone dynamics of the C-terminal SH2 domain of the p85alpha subunit of phosphoinositide 3-kinase: effect of phosphotyrosine-peptide binding and characterization of slow conformational exchange processes.
    Kristensen SM; Siegal G; Sankar A; Driscoll PC
    J Mol Biol; 2000 Jun; 299(3):771-88. PubMed ID: 10835283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations.
    Geroult S; Hooda M; Virdee S; Waksman G
    Chem Biol Drug Des; 2007 Aug; 70(2):87-99. PubMed ID: 17683370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains.
    Geroult S; Virdee S; Waksman G
    Chem Biol Drug Des; 2006 Jan; 67(1):38-45. PubMed ID: 16492147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance thermodynamic and kinetic analysis as a strategic tool in drug design. Distinct ways for phosphopeptides to plug into Src- and Grb2 SH2 domains.
    de Mol NJ; Dekker FJ; Broutin I; Fischer MJ; Liskamp RM
    J Med Chem; 2005 Feb; 48(3):753-63. PubMed ID: 15689159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear interaction energy: method and applications in drug design.
    Gutiérrez-de-Terán H; Aqvist J
    Methods Mol Biol; 2012; 819():305-23. PubMed ID: 22183545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy calculations applied to membrane proteins.
    Chipot C
    Methods Mol Biol; 2008; 443():121-44. PubMed ID: 18446285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events.
    Pichierri F
    Biophys Chem; 2004 May; 109(2):295-304. PubMed ID: 15110947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization.
    Henriques DA; Ladbury JE; Jackson RM
    Protein Sci; 2000 Oct; 9(10):1975-85. PubMed ID: 11106171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights from the energetics of water binding at the domain-ligand interface of the Src SH2 domain.
    De Fabritiis G; Geroult S; Coveney PV; Waksman G
    Proteins; 2008 Sep; 72(4):1290-7. PubMed ID: 18384045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phosphoarginine containing peptide as an artificial SH2 ligand.
    Hofmann FT; Lindemann C; Salia H; Adamitzki P; Karanicolas J; Seebeck FP
    Chem Commun (Camb); 2011 Oct; 47(37):10335-7. PubMed ID: 21853174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design.
    Henriques DA; Ladbury JE
    Arch Biochem Biophys; 2001 Jun; 390(2):158-68. PubMed ID: 11396918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation.
    Taylor JD; Gilbert PJ; Williams MA; Pitt WR; Ladbury JE
    Proteins; 2007 Jun; 67(4):981-90. PubMed ID: 17393456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of absolute protein-ligand binding free energy from computer simulations.
    Woo HJ; Roux B
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6825-30. PubMed ID: 15867154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-ligand binding free energy calculation by the Smooth Reaction Path Generation (SRPG) Method.
    Fukunishi Y; Mitomo D; Nakamura H
    J Chem Inf Model; 2009 Aug; 49(8):1944-51. PubMed ID: 19807195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding.
    Baron R; McCammon JA
    Chemphyschem; 2008 May; 9(7):983-8. PubMed ID: 18418822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics.
    Jayachandran G; Shirts MR; Park S; Pande VS
    J Chem Phys; 2006 Aug; 125(8):084901. PubMed ID: 16965051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of ligand binding to protein receptors.
    Wembridge P; Robinson H; Novak I
    Bioorg Chem; 2008 Dec; 36(6):288-94. PubMed ID: 18801553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity.
    Solheim SA; Petsalaki E; Stokka AJ; Russell RB; Taskén K; Berge T
    FEBS J; 2008 Oct; 275(19):4863-74. PubMed ID: 18721137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.