These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 18446363)
1. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Dong X; Ji R; Guo X; Foster SJ; Chen H; Dong C; Liu Y; Hu Q; Liu S Planta; 2008 Jul; 228(2):331-40. PubMed ID: 18446363 [TBL] [Abstract][Full Text] [Related]
2. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape. Zou QJ; Liu SY; Dong XY; Bi YH; Cao YC; Xu Q; Zhao YD; Chen H Phytochem Anal; 2007; 18(4):341-6. PubMed ID: 17623369 [TBL] [Abstract][Full Text] [Related]
3. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Hu X; Bidney DL; Yalpani N; Duvick JP; Crasta O; Folkerts O; Lu G Plant Physiol; 2003 Sep; 133(1):170-81. PubMed ID: 12970484 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Wang Z; Fang H; Chen Y; Chen K; Li G; Gu S; Tan X Mol Plant Pathol; 2014 Sep; 15(7):677-89. PubMed ID: 24521393 [TBL] [Abstract][Full Text] [Related]
8. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment. Calla B; Blahut-Beatty L; Koziol L; Simmonds DH; Clough SJ Mol Plant Pathol; 2014 Aug; 15(6):576-88. PubMed ID: 24330102 [TBL] [Abstract][Full Text] [Related]
10. Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome. Han C; Cheng Q; Du X; Liang L; Fan G; Xie J; Wang X; Tang Y; Zhang H; Hu C; Zhao X J Exp Bot; 2024 Sep; 75(18):5768-5789. PubMed ID: 38809805 [TBL] [Abstract][Full Text] [Related]
11. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum. Rahman H; Xu YP; Zhang XR; Cai XZ Front Plant Sci; 2016; 7():581. PubMed ID: 27200054 [TBL] [Abstract][Full Text] [Related]
12. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
13. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Xu J; Jia W; Hu C; Nie M; Ming J; Cheng Q; Cai M; Sun X; Li X; Zheng X; Wang J; Zhao X Environ Pollut; 2020 Feb; 257():113495. PubMed ID: 31733958 [TBL] [Abstract][Full Text] [Related]
14. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
15. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Rietz S; Bernsdorff FE; Cai D J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126 [TBL] [Abstract][Full Text] [Related]
16. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Fan Y; Du K; Gao Y; Kong Y; Chu C; Sokolov V; Wang Y Genetika; 2013 Apr; 49(4):439-47. PubMed ID: 23866620 [TBL] [Abstract][Full Text] [Related]
17. Microsensor in vivo monitoring of oxidative burst in oilseed rape (Brassica napus L.) leaves infected by Sclerotinia sclerotiorum. Xu Q; Liu SY; Zou QJ; Guo XL; Dong XY; Li PW; Song DY; Chen H; Zhao YD Anal Chim Acta; 2009 Jan; 632(1):21-5. PubMed ID: 19100878 [TBL] [Abstract][Full Text] [Related]
18. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878 [TBL] [Abstract][Full Text] [Related]
19. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Wang Z; Tan X; Zhang Z; Gu S; Li G; Shi H Plant Sci; 2012 Mar; 184():75-82. PubMed ID: 22284712 [TBL] [Abstract][Full Text] [Related]
20. MYB43 in Oilseed Rape ( Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973 [No Abstract] [Full Text] [Related] [Next] [New Search]