These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18446474)

  • 1. Design and evaluation of microemulsions for improved parenteral delivery of propofol.
    Date AA; Nagarsenker MS
    AAPS PharmSciTech; 2008; 9(1):138-45. PubMed ID: 18446474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured Lipid Carrier of Propofol: a Promising Alternative to Marketed Soybean Oil-Based Nanoemulsion.
    Shevalkar G; Pai R; Vavia P
    AAPS PharmSciTech; 2019 May; 20(5):201. PubMed ID: 31139968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of lorazepam microemulsions for parenteral delivery.
    Kale AA; Patravale VB
    AAPS PharmSciTech; 2008; 9(3):966-71. PubMed ID: 18720016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol.
    Li G; Fan Y; Li X; Wang X; Li Y; Liu Y; Li M
    Int J Pharm; 2012 Apr; 425(1-2):53-61. PubMed ID: 22266535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and anesthetic properties of propofol microemulsions in rats.
    Morey TE; Modell JH; Shekhawat D; Grand T; Shah DO; Gravenstein N; McGorray SP; Dennis DM
    Anesthesiology; 2006 Jun; 104(6):1184-90. PubMed ID: 16732089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions.
    Fan Y; Li X; Zhou Y; Fan C; Wang X; Huang Y; Liu Y
    Int J Pharm; 2011 Sep; 416(1):323-30. PubMed ID: 21726618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Micro to macro (M2M)"--A novel approach for intravenous delivery of propofol.
    Damitz R; Chauhan A
    Int J Pharm; 2015 Oct; 494(1):218-26. PubMed ID: 26260228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine.
    Kale AA; Patravale VB
    AAPS PharmSciTech; 2008; 9(1):191-6. PubMed ID: 18446481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Lipid Composition in Propofol Formulations: Decisive Component in Reducing the Free Propofol Content and Improving Pharmacodynamic Profiles.
    Darandale SS; Shevalkar GB; Vavia PR
    AAPS PharmSciTech; 2017 Feb; 18(2):441-450. PubMed ID: 27055535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation and Evaluation of Multidose Propofol Nanoemulsion Using Statistically Designed Experiments.
    Hota SS; Pattnaik S; Mallick S
    Acta Chim Slov; 2020 Mar; 67(1):179-188. PubMed ID: 33558914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus.
    Borhade V; Nair H; Hegde D
    AAPS PharmSciTech; 2008; 9(1):13-21. PubMed ID: 18446456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of propofol-loaded microemulsion systems for parenteral delivery.
    Ryoo HK; Park CW; Chi SC; Park ES
    Arch Pharm Res; 2005 Dec; 28(12):1400-4. PubMed ID: 16392675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Aprotinin Loaded Microemulsion Formulations for Parenteral Drug Delivery: Preparation, Characterization, in vitro Release and Cytotoxicity Studies.
    Okur NÜ; Özdemir Dİ; Kahyaoğlu ŞG; Şenyiğit ZA; Aşıkoğlu M; Genç L; Karasulu HY
    Curr Drug Deliv; 2015; 12(6):668-79. PubMed ID: 26306401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and evaluation of microemulsion based delivery system for amphotericin B.
    Darole PS; Hegde DD; Nair HA
    AAPS PharmSciTech; 2008; 9(1):122-8. PubMed ID: 18446472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations.
    Ustündağ Okur N; Apaydın S; Karabay Yavaşoğlu NÜ; Yavaşoğlu A; Karasulu HY
    Int J Pharm; 2011 Sep; 416(1):136-44. PubMed ID: 21723930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A propofol microemulsion with low free propofol in the aqueous phase: formulation, physicochemical characterization, stability and pharmacokinetics.
    Cai W; Deng W; Yang H; Chen X; Jin F
    Int J Pharm; 2012 Oct; 436(1-2):536-44. PubMed ID: 22814221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough?
    You X; Xing Q; Tuo J; Song W; Zeng Y; Hu H
    Int J Pharm; 2014 Aug; 471(1-2):276-84. PubMed ID: 24858390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity.
    Karasulu HY
    Expert Opin Drug Deliv; 2008 Jan; 5(1):119-35. PubMed ID: 18095932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances.
    Savić V; Todosijević M; Ilić T; Lukić M; Mitsou E; Papadimitriou V; Avramiotis S; Marković B; Cekić N; Savić S
    Int J Pharm; 2017 Aug; 529(1-2):491-505. PubMed ID: 28711641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propofol: the challenges of formulation.
    Baker MT; Naguib M
    Anesthesiology; 2005 Oct; 103(4):860-76. PubMed ID: 16192780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.