These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9941 related articles for article (PubMed ID: 18447366)
1. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-based nanolenses assembled on a well-defined DNA template. Bidault S; Abajo FJ; Polman A J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376 [TBL] [Abstract][Full Text] [Related]
8. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602 [TBL] [Abstract][Full Text] [Related]
9. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems. Chen Y; Preece JA; Palmer RE Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349 [TBL] [Abstract][Full Text] [Related]
10. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837 [TBL] [Abstract][Full Text] [Related]
11. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering. Cade NI; Ritman-Meer T; Kwaka K; Richards D Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490 [TBL] [Abstract][Full Text] [Related]
14. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Lin HY; Huang CH; Chang CH; Lan YC; Chui HC Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835 [TBL] [Abstract][Full Text] [Related]
15. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. Wang H; Tam F; Grady NK; Halas NJ J Phys Chem B; 2005 Oct; 109(39):18218-22. PubMed ID: 16853342 [TBL] [Abstract][Full Text] [Related]
16. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Lim SI; Zhong CJ Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982 [TBL] [Abstract][Full Text] [Related]
17. How gold nanoparticles have stayed in the light: the 3M's principle. Odom TW; Nehl CL ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589 [TBL] [Abstract][Full Text] [Related]
18. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Nath N; Chilkoti A Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894 [TBL] [Abstract][Full Text] [Related]
19. Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents. Kim J; Liu GL; Lu Y; Lee LP IEE Proc Nanobiotechnol; 2006 Jun; 153(3):42-6. PubMed ID: 16796398 [TBL] [Abstract][Full Text] [Related]
20. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures. Hsueh CH; Lin CH; Li JH; Hatab NA; Gu B Opt Express; 2011 Sep; 19(20):19660-7. PubMed ID: 21996907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]