These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

9941 related articles for article (PubMed ID: 18447366)

  • 1. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological applications of localised surface plasmonic phenomenae.
    Stuart DA; Haes AJ; Yonzon CR; Hicks EM; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):13-32. PubMed ID: 16441155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-based nanolenses assembled on a well-defined DNA template.
    Bidault S; Abajo FJ; Polman A
    J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanostructures: engineering their plasmonic properties for biomedical applications.
    Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y
    Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.
    Wang H; Tam F; Grady NK; Halas NJ
    J Phys Chem B; 2005 Oct; 109(39):18218-22. PubMed ID: 16853342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size.
    Nath N; Chilkoti A
    Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents.
    Kim J; Liu GL; Lu Y; Lee LP
    IEE Proc Nanobiotechnol; 2006 Jun; 153(3):42-6. PubMed ID: 16796398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures.
    Hsueh CH; Lin CH; Li JH; Hatab NA; Gu B
    Opt Express; 2011 Sep; 19(20):19660-7. PubMed ID: 21996907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 498.