These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 18447447)
1. A theoretical study of the excited states of AmO2n+, n=1,2,3. Notter FP; Dubillard S; Bolvin H J Chem Phys; 2008 Apr; 128(16):164315. PubMed ID: 18447447 [TBL] [Abstract][Full Text] [Related]
2. Excited states of OsO4: a comprehensive time-dependent relativistic density functional theory study. Zhang Y; Xu W; Sun Q; Zou W; Liu W J Comput Chem; 2010 Feb; 31(3):532-51. PubMed ID: 19530111 [TBL] [Abstract][Full Text] [Related]
3. High-order electron-correlation methods with scalar relativistic and spin-orbit corrections. Hirata S; Yanai T; Harrison RJ; Kamiya M; Fan PD J Chem Phys; 2007 Jan; 126(2):024104. PubMed ID: 17228940 [TBL] [Abstract][Full Text] [Related]
4. Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: the implementation for low-lying excited states. Fang T; Shen J; Li S J Chem Phys; 2008 Dec; 129(23):234106. PubMed ID: 19102525 [TBL] [Abstract][Full Text] [Related]
5. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect. Wang F; Ziegler T J Chem Phys; 2005 Oct; 123(15):154102. PubMed ID: 16252937 [TBL] [Abstract][Full Text] [Related]
6. Electronic spectrum of UO2(2+) and [UO2Cl4]2- calculated with time-dependent density functional theory. Pierloot K; van Besien E; van Lenthe E; Baerends EJ J Chem Phys; 2007 May; 126(19):194311. PubMed ID: 17523808 [TBL] [Abstract][Full Text] [Related]
7. An ab initio theoretical study of the electronic structure of UO2(+) and [UO2(CO3)3]5-. Ruipérez F; Danilo C; Réal F; Flament JP; Vallet V; Wahlgren U J Phys Chem A; 2009 Feb; 113(8):1420-8. PubMed ID: 19182969 [TBL] [Abstract][Full Text] [Related]
8. Block correlated coupled cluster method with the complete active-space self-consistent-field reference function: Applications for low-lying electronic excited states. Shen J; Li S J Chem Phys; 2009 Nov; 131(17):174101. PubMed ID: 19894992 [TBL] [Abstract][Full Text] [Related]
9. Third- and fourth-order perturbation corrections to excitation energies from configuration interaction singles. Hirata S J Chem Phys; 2005 Mar; 122(9):094105. PubMed ID: 15836110 [TBL] [Abstract][Full Text] [Related]
10. On the accuracy of one-component pseudopotential spin-orbit calculations. Fromager E; Visscher L; Maron L; Teichteil C J Chem Phys; 2005 Oct; 123(16):164105. PubMed ID: 16268679 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study of the excited states of CrH: potential energies, transition moments, and lifetimes. Ghigo G; Roos BO; Stancil PC; Weck PF J Chem Phys; 2004 Nov; 121(17):8194-200. PubMed ID: 15511138 [TBL] [Abstract][Full Text] [Related]
12. Ab initio study of a Bi3+ impurity in Cs2NaYCl6 and Y2O3: comparison of perturbative and variational electron correlation methods. Réal F; Vallet V; Flament JP; Schamps J J Chem Phys; 2006 Nov; 125(17):174709. PubMed ID: 17100463 [TBL] [Abstract][Full Text] [Related]
13. Theoretical characterization of the low-lying electronic states of NbC. Denis PA; Balasubramanian K J Chem Phys; 2005 Aug; 123(5):054318. PubMed ID: 16108650 [TBL] [Abstract][Full Text] [Related]
14. SPOCK.CI: a multireference spin-orbit configuration interaction method for large molecules. Kleinschmidt M; Tatchen J; Marian CM J Chem Phys; 2006 Mar; 124(12):124101. PubMed ID: 16599656 [TBL] [Abstract][Full Text] [Related]
15. Spin-orbit configuration interaction study of the electronic structure of the 5f (2) manifold of U(4+) and the 5f manifold of U(5+). Danilo C; Vallet V; Flament JP; Wahlgren U J Chem Phys; 2008 Apr; 128(15):154310. PubMed ID: 18433212 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study of the ground state and lowest excited states of PuO0/+/+2 and PuO(2)0/+/+2. La Macchia G; Infante I; Raab J; Gibson JK; Gagliardi L Phys Chem Chem Phys; 2008 Dec; 10(48):7278-83. PubMed ID: 19060973 [TBL] [Abstract][Full Text] [Related]
17. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian. Abe M; Nakajima T; Hirao K J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550 [TBL] [Abstract][Full Text] [Related]
18. Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. Shiozaki T; Hirao K; Hirata S J Chem Phys; 2007 Jun; 126(24):244106. PubMed ID: 17614536 [TBL] [Abstract][Full Text] [Related]
19. A theoretical study of the fine and hyperfine interactions in the NCO and CNO radicals. Prasad R J Chem Phys; 2004 Jun; 120(21):10089-100. PubMed ID: 15268031 [TBL] [Abstract][Full Text] [Related]
20. Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods. Rota JB; Knecht S; Fleig T; Ganyushin D; Saue T; Neese F; Bolvin H J Chem Phys; 2011 Sep; 135(11):114106. PubMed ID: 21950849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]