BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18447516)

  • 1. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range.
    Meckenstock R
    Rev Sci Instrum; 2008 Apr; 79(4):041101. PubMed ID: 18447516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective: Local ferromagnetic resonance measurement techniques: "Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range" [Rev. Sci. Instrum. 79, 041101 (2008)].
    Mo N; Patton CE
    Rev Sci Instrum; 2008 Apr; 79(4):040901. PubMed ID: 18447515
    [No Abstract]   [Full Text] [Related]  

  • 3. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combination of micro-resonators with spatially resolved ferromagnetic resonance.
    Schaffers T; Meckenstock R; Spoddig D; Feggeler T; Ollefs K; Schöppner C; Bonetti S; Ohldag H; Farle M; Ney A
    Rev Sci Instrum; 2017 Sep; 88(9):093703. PubMed ID: 28964194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing arrays of circular magnetic microdots by ferromagnetic resonance.
    Kakazei GN; Mewes T; Wigen PE; Hammel PC; Slavin AN; Pogorelov YG; Costa MD; Golub VO; Guslienko KY; Novosad V
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2811-26. PubMed ID: 18681017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale imaging magnetometry with diamond spins under ambient conditions.
    Balasubramanian G; Chan IY; Kolesov R; Al-Hmoud M; Tisler J; Shin C; Kim C; Wojcik A; Hemmer PR; Krueger A; Hanke T; Leitenstorfer A; Bratschitsch R; Jelezko F; Wrachtrup J
    Nature; 2008 Oct; 455(7213):648-51. PubMed ID: 18833276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air.
    Kim K; Chung J; Hwang G; Kwon O; Lee JS
    ACS Nano; 2011 Nov; 5(11):8700-9. PubMed ID: 21999681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband optical near-field microscope for nanoscale absorption spectroscopy of organic materials.
    Pomraenke R; Ropers C; Renard J; Lienau C; Lüer L; Polli D; Cerullo G
    J Microsc; 2008 Feb; 229(Pt 2):197-202. PubMed ID: 18304072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave properties of ferromagnetic nanostructures.
    Valenzuela R; Alvarez G; Mata-Zamora ME
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2827-35. PubMed ID: 18681018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range.
    Bonetti S; Kukreja R; Chen Z; Spoddig D; Ollefs K; Schöppner C; Meckenstock R; Ney A; Pinto J; Houanche R; Frisch J; Stöhr J; Dürr HA; Ohldag H
    Rev Sci Instrum; 2015 Sep; 86(9):093703. PubMed ID: 26429444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal exchange radius measurement: application to nanowire thermal imaging.
    Puyoo E; Grauby S; Rampnoux JM; Rouvière E; Dilhaire S
    Rev Sci Instrum; 2010 Jul; 81(7):073701. PubMed ID: 20687725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cantilever detected ferromagnetic resonance in thin Fe50Ni50, Co2FeAl0.5Si0.5 and Sr2FeMoO6 films using a double modulation technique.
    Alfonsov A; Ohmichi E; Leksin P; Omar A; Wang H; Wurmehl S; Yang F; Ohta H
    J Magn Reson; 2016 Sep; 270():183-186. PubMed ID: 27498338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.