These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18447559)

  • 1. Broadband electron spin resonance at low frequency without resonant cavity.
    Jang ZH; Suh BJ; Corti M; Cattaneo L; Hajny D; Borsa F; Luban M
    Rev Sci Instrum; 2008 Apr; 79(4):046101. PubMed ID: 18447559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-wave far-infrared ESR spectrometer for high-pressure measurements.
    Náfrádi B; Gaál R; Sienkiewicz A; Fehér T; Forró L
    J Magn Reson; 2008 Dec; 195(2):206-10. PubMed ID: 18835205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A longitudinally detected high-field ESR spectrometer for the measurement of spin-lattice relaxation times.
    Murányi F; Simon F; Fülöp F; Jánossy A
    J Magn Reson; 2004 Apr; 167(2):221-7. PubMed ID: 15040977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric resonator-based resonant structure for sensitive ESR measurements at high-hydrostatic pressures.
    Sienkiewicz A; Vileno B; Garaj S; Jaworski M; Forró L
    J Magn Reson; 2005 Dec; 177(2):261-73. PubMed ID: 16168687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance.
    Colton JS; Wienkes LR
    Rev Sci Instrum; 2009 Mar; 80(3):035106. PubMed ID: 19334951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband electron spin resonance at 4-40 GHz and magnetic fields up to 10 T.
    Schlegel C; Dressel M; van Slageren J
    Rev Sci Instrum; 2010 Sep; 81(9):093901. PubMed ID: 20886988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.
    Simon F; Murányi F
    J Magn Reson; 2005 Apr; 173(2):288-95. PubMed ID: 15780920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.
    Brown GG; Dian BC; Douglass KO; Geyer SM; Shipman ST; Pate BH
    Rev Sci Instrum; 2008 May; 79(5):053103. PubMed ID: 18513057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer.
    Morley GW; Brunel LC; van Tol J
    Rev Sci Instrum; 2008 Jun; 79(6):064703. PubMed ID: 18601425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields.
    Zvyagin SA; Ozerov M; Cizmár E; Kamenskyi D; Zherlitsyn S; Herrmannsdörfer T; Wosnitza J; Wünsch R; Seidel W
    Rev Sci Instrum; 2009 Jul; 80(7):073102. PubMed ID: 19655938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force detected electron spin resonance at 94 GHz.
    Cruickshank PA; Smith GM
    Rev Sci Instrum; 2007 Jan; 78(1):015101. PubMed ID: 17503940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave frequency modulation in continuous-wave far-infrared ESR utilizing a quasi-optical reflection bridge.
    Náfrádi B; Gaál R; Fehér T; Forró L
    J Magn Reson; 2008 Jun; 192(2):265-8. PubMed ID: 18375160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband electrically detected magnetic resonance using adiabatic pulses.
    Hrubesch FM; Braunbeck G; Voss A; Stutzmann M; Brandt MS
    J Magn Reson; 2015 May; 254():62-9. PubMed ID: 25828243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically detected magnetic resonance in a W-band microwave cavity.
    Lang V; Lo CC; George RE; Lyon SA; Bokor J; Schenkel T; Ardavan A; Morton JJ
    Rev Sci Instrum; 2011 Mar; 82(3):034704. PubMed ID: 21456773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.
    Murugesu M; Takahashi S; Wilson A; Abboud KA; Wernsdorfer W; Hill S; Christou G
    Inorg Chem; 2008 Oct; 47(20):9459-70. PubMed ID: 18788733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.
    Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD
    Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism.
    Bingham SJ; Wolverson D; Thomson AJ
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1187-90. PubMed ID: 19021521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency electron spin resonance system using a microcantilever and a pulsed magnetic field.
    Ohmichi E; Mizuno N; Kimata M; Ohta H; Osada T
    Rev Sci Instrum; 2009 Jan; 80(1):013904. PubMed ID: 19191444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the anisotropy in the molecule Mn19 with a high-spin ground state S = 83/2 by 35 GHz electron paramagnetic resonance.
    Waldmann O; Ako AM; Güdel HU; Powell AK
    Inorg Chem; 2008 May; 47(9):3486-8. PubMed ID: 18393411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.