BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18448164)

  • 1. Development of biodegradable electrospun scaffolds for dermal replacement.
    Blackwood KA; McKean R; Canton I; Freeman CO; Franklin KL; Cole D; Brook I; Farthing P; Rimmer S; Haycock JW; Ryan AJ; MacNeil S
    Biomaterials; 2008 Jul; 29(21):3091-104. PubMed ID: 18448164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide.
    Pan H; Jiang H; Chen W
    Biomaterials; 2006 Jun; 27(17):3209-20. PubMed ID: 16499965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species.
    Martin JR; Gupta MK; Page JM; Yu F; Davidson JM; Guelcher SA; Duvall CL
    Biomaterials; 2014 Apr; 35(12):3766-76. PubMed ID: 24491510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration.
    Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC
    Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering.
    Zuber A; Borowczyk J; Zimolag E; Krok M; Madeja Z; Pamula E; Drukala J
    Cell Mol Biol Lett; 2014 Jun; 19(2):297-314. PubMed ID: 24825569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method.
    Zhao L; He C; Gao Y; Cen L; Cui L; Cao Y
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):26-34. PubMed ID: 18384158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro.
    Shin HJ; Lee CH; Cho IH; Kim YJ; Lee YJ; Kim IA; Park KD; Yui N; Shin JW
    J Biomater Sci Polym Ed; 2006; 17(1-2):103-19. PubMed ID: 16411602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning.
    Xie D; Huang H; Blackwood K; MacNeil S
    Biomed Mater; 2010 Dec; 5(6):065016. PubMed ID: 21079284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches.
    Sadeghi-Avalshahr AR; Khorsand-Ghayeni M; Nokhasteh S; Molavi AM; Naderi-Meshkin H
    J Mater Sci Mater Med; 2017 Jan; 28(1):14. PubMed ID: 27995492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth.
    Zhou W; Feng Y; Yang J; Fan J; Lv J; Zhang L; Guo J; Ren X; Zhang W
    J Mater Sci Mater Med; 2015 Jan; 26(1):5386. PubMed ID: 25601671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro.
    Duan B; Wu L; Li X; Yuan X; Li X; Zhang Y; Yao K
    J Biomater Sci Polym Ed; 2007; 18(1):95-115. PubMed ID: 17274454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.