These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18448175)

  • 1. Cytotoxic interactions of methylene blue with trypanosomatid-specific disulfide reductases and their dithiol products.
    Buchholz K; Comini MA; Wissenbach D; Schirmer RH; Krauth-Siegel RL; Gromer S
    Mol Biochem Parasitol; 2008 Jul; 160(1):65-9. PubMed ID: 18448175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.
    Haynes RK; Chan WC; Wong HN; Li KY; Wu WK; Fan KM; Sung HH; Williams ID; Prosperi D; Melato S; Coghi P; Monti D
    ChemMedChem; 2010 Aug; 5(8):1282-99. PubMed ID: 20629071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity.
    Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF
    Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity.
    Salmon-Chemin L; Buisine E; Yardley V; Kohler S; Debreu MA; Landry V; Sergheraert C; Croft SL; Krauth-Siegel RL; Davioud-Charvet E
    J Med Chem; 2001 Feb; 44(4):548-65. PubMed ID: 11170645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betraying the parasite's redox system: diaryl sulfide-based inhibitors of trypanothione reductase: subversive substrates and antitrypanosomal properties.
    Stump B; Kaiser M; Brun R; Krauth-Siegel RL; Diederich F
    ChemMedChem; 2007 Dec; 2(12):1708-12. PubMed ID: 17918760
    [No Abstract]   [Full Text] [Related]  

  • 7. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design.
    Aguirre G; Cabrera E; Cerecetto H; Di Maio R; González M; Seoane G; Duffaut A; Denicola A; Gil MJ; Martínez-Merino V
    Eur J Med Chem; 2004 May; 39(5):421-31. PubMed ID: 15110968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of substrate analogue inhibitors of trypanothione reductase.
    Duyzend MH; Clark CT; Simmons SL; Johnson WB; Larson AM; Leconte AM; Wills AW; Ginder-Vogel M; Wilhelm AK; Czechowicz JA; Alberg DG
    J Enzyme Inhib Med Chem; 2012 Dec; 27(6):784-94. PubMed ID: 22085139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies.
    Gallwitz H; Bonse S; Martinez-Cruz A; Schlichting I; Schumacher K; Krauth-Siegel RL
    J Med Chem; 1999 Feb; 42(3):364-72. PubMed ID: 9986706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase.
    Blumenstiel K; Schöneck R; Yardley V; Croft SL; Krauth-Siegel RL
    Biochem Pharmacol; 1999 Dec; 58(11):1791-9. PubMed ID: 10571254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited.
    Arias DG; Marquez VE; Chiribao ML; Gadelha FR; Robello C; Iglesias AA; Guerrero SA
    Free Radic Biol Med; 2013 Oct; 63():65-77. PubMed ID: 23665397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irreversible inactivation of trypanothione reductase by unsaturated Mannich bases: a divinyl ketone as key intermediate.
    Lee B; Bauer H; Melchers J; Ruppert T; Rattray L; Yardley V; Davioud-Charvet E; Krauth-Siegel RL
    J Med Chem; 2005 Nov; 48(23):7400-10. PubMed ID: 16279799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inactivation of Trypanosoma cruzi trypanothione reductase by phenothiazine cationic free radicals].
    Gutierrez Correa J; Fairlamb AH; Stoppani AO
    Rev Argent Microbiol; 2001; 33(1):36-46. PubMed ID: 11407019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, purification, and characterization of Leishmania donovani trypanothione reductase in Escherichia coli.
    Mittal MK; Misra S; Owais M; Goyal N
    Protein Expr Purif; 2005 Apr; 40(2):279-86. PubMed ID: 15766869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi.
    Maya JD; Repetto Y; Agosín M; Ojeda JM; Tellez R; Gaule C; Morello A
    Mol Biochem Parasitol; 1997 May; 86(1):101-6. PubMed ID: 9178272
    [No Abstract]   [Full Text] [Related]  

  • 18. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparative enzymatic synthesis of trypanothione and trypanothione analogues.
    Comini MA; Dirdjaja N; Kaschel M; Krauth-Siegel RL
    Int J Parasitol; 2009 Aug; 39(10):1059-62. PubMed ID: 19477177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.