These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 18448635)
1. Dendritic design implements algorithm for synaptic extraction of sensory information. Ogawa H; Cummins GI; Jacobs GA; Oka K J Neurosci; 2008 Apr; 28(18):4592-603. PubMed ID: 18448635 [TBL] [Abstract][Full Text] [Related]
2. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron. Ogawa H; Baba Y; Oka K Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112 [TBL] [Abstract][Full Text] [Related]
3. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. Jacobs GA; Miller JP; Murphey RK J Neurosci; 1986 Aug; 6(8):2298-311. PubMed ID: 3746411 [TBL] [Abstract][Full Text] [Related]
4. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. Ogawa H; Baba Y; Oka K J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157 [TBL] [Abstract][Full Text] [Related]
5. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons. Ogawa H; Mitani R Biochem Biophys Res Commun; 2015 Nov; 467(2):185-90. PubMed ID: 26456645 [TBL] [Abstract][Full Text] [Related]
6. Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus. Ogawa H; Baba Y; Oka K Neurosci Lett; 1996 Nov; 219(1):21-4. PubMed ID: 8961294 [TBL] [Abstract][Full Text] [Related]
7. Synaptic reorganization induced by selective photoablation of an identified neuron. Mizrahi A; Libersat F J Neurosci; 2001 Dec; 21(23):9280-90. PubMed ID: 11717362 [TBL] [Abstract][Full Text] [Related]
8. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons. Ogawa H; Baba Y; Oka K J Neurobiol; 2002 Oct; 53(1):44-56. PubMed ID: 12360582 [TBL] [Abstract][Full Text] [Related]
9. Spike-dependent calcium influx in dendrites of the cricket giant interneuron. Ogawa H; Baba Y; Oka K J Neurobiol; 2000 Jul; 44(1):45-56. PubMed ID: 10880131 [TBL] [Abstract][Full Text] [Related]
10. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation. Davis GW; Murphey RK J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348 [TBL] [Abstract][Full Text] [Related]
11. Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. Ogawa H; Baba Y; Oka K J Neurobiol; 2002 Feb; 50(3):234-44. PubMed ID: 11810638 [TBL] [Abstract][Full Text] [Related]
12. Extraction of sensory parameters from a neural map by primary sensory interneurons. Jacobs GA; Theunissen FE J Neurosci; 2000 Apr; 20(8):2934-43. PubMed ID: 10751446 [TBL] [Abstract][Full Text] [Related]
13. Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive. Callan AR; Heß M; Felmy F; Leibold C J Neurosci; 2021 Jan; 41(2):269-283. PubMed ID: 33208467 [TBL] [Abstract][Full Text] [Related]
14. Regulation of synaptic depression rates in the cricket cercal sensory system. Hill AA; Jin P J Neurophysiol; 1998 Mar; 79(3):1277-85. PubMed ID: 9497409 [TBL] [Abstract][Full Text] [Related]
15. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. Letellier M; Levet F; Thoumine O; Goda Y PLoS Biol; 2019 Jun; 17(6):e2006223. PubMed ID: 31166943 [TBL] [Abstract][Full Text] [Related]
16. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system. Bodnar DA J Comp Physiol A; 1993 May; 172(5):641-51. PubMed ID: 8331608 [TBL] [Abstract][Full Text] [Related]
17. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. Theunissen F; Roddey JC; Stufflebeam S; Clague H; Miller JP J Neurophysiol; 1996 Apr; 75(4):1345-64. PubMed ID: 8727382 [TBL] [Abstract][Full Text] [Related]
18. Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS. Killian KA; Murphey RK J Neurobiol; 1998 Dec; 37(4):700-14. PubMed ID: 9858269 [TBL] [Abstract][Full Text] [Related]
19. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity. Blagburn JM; Sosa MA; Blanco RE J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942 [TBL] [Abstract][Full Text] [Related]
20. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. Tamás G; Buhl EH; Somogyi P J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):715-38. PubMed ID: 9161987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]