These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18448792)

  • 41. Strecker aldehydes and α-keto acids, produced by carbonyl-amine reactions, contribute to the formation of acrylamide.
    Zamora R; Delgado RM; Hidalgo FJ
    Food Chem; 2011 Sep; 128(2):465-70. PubMed ID: 25212157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems.
    Zamora R; Delgado RM; Hidalgo FJ
    Mol Nutr Food Res; 2009 Dec; 53(12):1512-20. PubMed ID: 19746374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of phosphate and carboxylate ions in maillard browning.
    Rizzi GP
    J Agric Food Chem; 2004 Feb; 52(4):953-7. PubMed ID: 14969556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems.
    Van Lancker F; Adams A; De Kimpe N
    J Agric Food Chem; 2012 May; 60(18):4697-708. PubMed ID: 22463717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flavour formation by amino acid catabolism.
    Ardö Y
    Biotechnol Adv; 2006; 24(2):238-42. PubMed ID: 16406465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glycerol, an underestimated flavor precursor in the Maillard reaction.
    Smarrito-Menozzi C; Matthey-Doret W; Devaud-Goumoens S; Viton F
    J Agric Food Chem; 2013 Oct; 61(43):10225-30. PubMed ID: 23373461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial formation of esters.
    Park YC; Shaffer CE; Bennett GN
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):13-25. PubMed ID: 19714327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry.
    Märk J; Pollien P; Lindinger C; Blank I; Märk T
    J Agric Food Chem; 2006 Apr; 54(7):2786-93. PubMed ID: 16569077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flavor formation based on lipid in meat and meat products: A review.
    Fu Y; Cao S; Yang L; Li Z
    J Food Biochem; 2022 Dec; 46(12):e14439. PubMed ID: 36183160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosynthesis of plant-derived flavor compounds.
    Schwab W; Davidovich-Rikanati R; Lewinsohn E
    Plant J; 2008 May; 54(4):712-32. PubMed ID: 18476874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning.
    Zamora R; Hidalgo FJ
    Crit Rev Food Sci Nutr; 2005; 45(1):49-59. PubMed ID: 15730188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.
    Karademir Y; Göncüoğlu N; Gökmen V
    Food Funct; 2013 Jul; 4(7):1061-6. PubMed ID: 23474835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of strecker aldehydes from polyphenol-derived quinones and alpha-amino acids in a nonenzymic model system.
    Rizzi GP
    J Agric Food Chem; 2006 Mar; 54(5):1893-7. PubMed ID: 16506850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclocondensation of 2,3-butanedione in the presence of amino acids and formation of 4,5-dimethyl-1,2-phenylendiamine.
    Guerra PV; Yaylayan VA
    Food Chem; 2013 Dec; 141(4):4391-6. PubMed ID: 23993630
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products.
    Hidalgo FJ; Zamora R
    Food Chem X; 2019 Jun; 2():100037. PubMed ID: 31432020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2-Alkylpyrrole formation from 4,5-epoxy-2-alkenals.
    Zamora R; Hidalgo FJ
    Chem Res Toxicol; 2005 Feb; 18(2):342-8. PubMed ID: 15720141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Changes in foods caused by technologic procedures].
    Matissek R; Baltes W
    Z Hautkr; 1987; 62 Suppl 1():22-35. PubMed ID: 3442081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.