These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18448823)

  • 1. The peptide-catalyzed Maillard reaction: characterization of 13C reductones.
    Garbe LA; Würtz A; Piechotta CT; Tressl R
    Ann N Y Acad Sci; 2008 Apr; 1126():244-7. PubMed ID: 18448823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of the Maillard reaction products of a protein using ion trap mass spectrometry.
    Tagami U; Akashi S; Mizukoshi T; Suzuki E; Hirayama K
    J Mass Spectrom; 2000 Feb; 35(2):131-8. PubMed ID: 10679972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction.
    Horvat S; Roscić M
    Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide and amino acid glycation: new insights into the Maillard reaction.
    Horvat S; Jakas A
    J Pept Sci; 2004 Mar; 10(3):119-37. PubMed ID: 15113085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.
    Davídek T; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6667-76. PubMed ID: 16939325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformations of bioactive peptides in the presence of sugars--characterization and stability studies of the adducts generated via the Maillard reaction.
    Roscić M; Horvat S
    Bioorg Med Chem; 2006 Jul; 14(14):4933-43. PubMed ID: 16563774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of flavour compounds in the Maillard reaction.
    van Boekel MA
    Biotechnol Adv; 2006; 24(2):230-3. PubMed ID: 16386869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars.
    Lee SM; Jo YJ; Kim YS
    J Agric Food Chem; 2010 Mar; 58(5):3116-24. PubMed ID: 20146478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and reactivity toward nucleophilic amino acids of 2,5-[13C]-dimethyl-p-benzoquinonediimine.
    Eilstein J; Giménez-Arnau E; Duché D; Rousset F; Lepoittevin JP
    Chem Res Toxicol; 2006 Sep; 19(9):1248-56. PubMed ID: 16978031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation mechanism of cross-linking Maillard compounds in peptide-xylose systems.
    Liu P; Zhang X; Huang M; Song S; Nsor-Atindana J
    J Pept Sci; 2012 Oct; 18(10):626-34. PubMed ID: 22933421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and yields of acetic acid in pentose-based Maillard reaction systems.
    Davidek T; Gouézec E; Devaud S; Blank I
    Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of reaction products formed in a model reaction between pentanal and lysine-containing oligopeptides.
    Dalsgaard TK; Nielsen JH; Larsen LB
    J Agric Food Chem; 2006 Aug; 54(17):6367-73. PubMed ID: 16910732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of mass spectrometry to the study of the Maillard reaction in food.
    Fay LB; Brevard H
    Mass Spectrom Rev; 2005; 24(4):487-507. PubMed ID: 15389846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry.
    Märk J; Pollien P; Lindinger C; Blank I; Märk T
    J Agric Food Chem; 2006 Apr; 54(7):2786-93. PubMed ID: 16569077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant activity and chemical properties of crude and fractionated Maillard reaction products derived from four sugar-amino acid Maillard reaction model systems.
    Chen XM; Kitts DD
    Ann N Y Acad Sci; 2008 Apr; 1126():220-4. PubMed ID: 18448820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.
    Scalone GL; Cucu T; De Kimpe N; De Meulenaer B
    J Agric Food Chem; 2015 Jun; 63(22):5364-72. PubMed ID: 25971942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.