BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18448824)

  • 1. Model studies on protein glycation: influence of cysteine on the reactivity of arginine and lysine residues toward glyoxal.
    Schwarzenbolz U; Mende S; Henle T
    Ann N Y Acad Sci; 2008 Apr; 1126():248-52. PubMed ID: 18448824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.
    Thornalley PJ; Langborg A; Minhas HS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):109-16. PubMed ID: 10548540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.
    Ma J; Peng X; Zhang X; Chen F; Wang M
    Chem Res Toxicol; 2011 Aug; 24(8):1304-11. PubMed ID: 21696151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and quantitative evaluation of the lysine-arginine crosslinks GODIC, MODIC, DODIC, and glucosepan in foods.
    Biemel KM; Bühler HP; Reihl O; Lederer MO
    Nahrung; 2001 Jun; 45(3):210-4. PubMed ID: 11455790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Terminal pyrazinones: a new class of peptide-bound advanced glycation end-products.
    Krause R; Kühn J; Penndorf I; Knoll K; Henle T
    Amino Acids; 2004 Aug; 27(1):9-18. PubMed ID: 15309567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative DFT study to determine if α-oxoaldehydes are precursors for pentosidine formation.
    Nasiri R; Field MJ; Zahedi M; Moosavi-Movahedi AA
    J Phys Chem A; 2012 Mar; 116(11):2986-96. PubMed ID: 22335775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeling studies on the formation pathway of Nepsilon-carboxymethyllysine in maillard-type reactions.
    Kasper M; Schieberle P
    Ann N Y Acad Sci; 2005 Jun; 1043():59-62. PubMed ID: 16037222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intact glycation end products containing carboxymethyl-lysine and glyoxal lysine dimer obtained from synthetic collagen model peptide.
    Yamada H; Sasaki T; Niwa S; Oishi T; Murata M; Kawakami T; Aimoto S
    Bioorg Med Chem Lett; 2004 Nov; 14(22):5677-80. PubMed ID: 15482946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product.
    Banerjee S
    J Fluoresc; 2017 Jul; 27(4):1213-1219. PubMed ID: 28299531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselective synthesis of peptides containing major advanced glycation end-products of lysine and arginine.
    Gruber P; Hofmann T
    J Pept Res; 2005 Sep; 66(3):111-24. PubMed ID: 16083438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose.
    Hinton DJ; Ames JM
    Amino Acids; 2006 Jun; 30(4):425-34. PubMed ID: 16583308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation of lysine-containing dipeptides.
    Mennella C; Visciano M; Napolitano A; Del Castillo MD; Fogliano V
    J Pept Sci; 2006 Apr; 12(4):291-6. PubMed ID: 16180244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of protein bound lysine-derived galactosyl and glucosyl pyrroles in heated model systems.
    Pellegrino L; De Noni I; Cattaneo S
    Nahrung; 2000 Jun; 44(3):193-200. PubMed ID: 10907242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model studies on chemical and textural modifications in gelatin films by reaction with glyoxal and glycolaldehyde.
    Spanneberg R; Osswald F; Kolesov I; Anton W; Radusch HJ; Glomb MA
    J Agric Food Chem; 2010 Mar; 58(6):3580-5. PubMed ID: 20232905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model studies on the influence of high hydrostatic pressure on the formation of glycated arginine modifications at elevated temperatures.
    Alt N; Schieberle P
    J Agric Food Chem; 2005 Jul; 53(14):5789-97. PubMed ID: 15998150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological detection of N omega-(Carboxymethyl)arginine by a specific antibody.
    Mera K; Fujiwara Y; Otagiri M; Sakata N; Nagai R
    Ann N Y Acad Sci; 2008 Apr; 1126():155-7. PubMed ID: 18079475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose.
    Ferreira AE; Ponces Freire AM; Voit EO
    Biochem J; 2003 Nov; 376(Pt 1):109-21. PubMed ID: 12911334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues.
    Richarme G; Mihoub M; Dairou J; Bui LC; Leger T; Lamouri A
    J Biol Chem; 2015 Jan; 290(3):1885-97. PubMed ID: 25416785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.