These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18449313)

  • 1. Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry.
    Wang CC; Lee CW; Huang CY; Lin JY; Wei PK; Lee CH
    Appl Opt; 2008 May; 47(13):2458-64. PubMed ID: 18449313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy.
    Wang CC; Lin JY; Chen HC; Lee CH
    Opt Lett; 2006 Oct; 31(19):2873-5. PubMed ID: 16969407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell membrane deformations under magnetic force modulation characterized by optical tracking and non-interferometric widefield profilometry.
    Wang CC; Jian HJ; Wu CW; Lee CH
    Microsc Res Tech; 2008 Aug; 71(8):594-8. PubMed ID: 18452190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry.
    Wang CC; Lin JY; Lee CH
    Opt Express; 2005 Dec; 13(26):10665-72. PubMed ID: 19503281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY; Hu Y; Drezek RA; Hafner JH; Lapotko DO
    Nanomedicine (Lond); 2008 Dec; 3(6):797-812. PubMed ID: 19025454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Scattering Nonlinearities from a Single Plasmonic Nanoparticle.
    Lee H; Li KY; Huang YT; Shen PT; Deka G; Oketani R; Yonemaru Y; Yamanaka M; Fujita K; Chu SW
    J Vis Exp; 2016 Jan; (107):. PubMed ID: 26780248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination.
    Chang BJ; Lin SH; Chou LJ; Chiang SY
    Opt Lett; 2011 Dec; 36(24):4773-5. PubMed ID: 22179879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments.
    Lee CW; Jang LL; Pan HJ; Chen YR; Chen CC; Lee CH
    J Nanobiotechnology; 2016 Jan; 14():9. PubMed ID: 26821536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical extinction and scattering cross sections of plasmonic nanoparticle dimers in aqueous suspension.
    Loumaigne M; Midelet C; Doussineau T; Dugourd P; Antoine R; Stamboul M; Débarre A; Werts MH
    Nanoscale; 2016 Mar; 8(12):6555-70. PubMed ID: 26935710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer.
    Yang JS; Sung JH; O BH
    Opt Express; 2010 Jun; 18(13):13418-24. PubMed ID: 20588472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.
    Reddy NK; Pérez-Juste J; Pastoriza-Santos I; Lang PR; Dhont JK; Liz-Marzán LM; Vermant J
    ACS Nano; 2011 Jun; 5(6):4935-44. PubMed ID: 21545088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.
    Kinoshita T; Kiso K; LE DQ; Shiigi H; Nagaoka T
    Anal Sci; 2016; 32(3):301-5. PubMed ID: 26960609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells.
    Lasne D; Blab GA; Berciaud S; Heine M; Groc L; Choquet D; Cognet L; Lounis B
    Biophys J; 2006 Dec; 91(12):4598-604. PubMed ID: 16997874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates.
    Krawinkel J; Richter U; Torres-Mapa ML; Westermann M; Gamrad L; Rehbock C; Barcikowski S; Heisterkamp A
    J Nanobiotechnology; 2016 Jan; 14():2. PubMed ID: 26745990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field.
    Höppener C; Lapin ZJ; Bharadwaj P; Novotny L
    Phys Rev Lett; 2012 Jul; 109(1):017402. PubMed ID: 23031130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters.
    Herrmann LO; Valev VK; Aizpurua J; Baumberg JJ
    Opt Express; 2013 Dec; 21(26):32377-85. PubMed ID: 24514830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption analysis and optimization of gold nanoshells.
    Tuersun P; Han X
    Appl Opt; 2013 Feb; 52(6):1325-9. PubMed ID: 23435006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.