BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18449466)

  • 1. Development of a toxicity identification evaluation protocol using chlorophyll-a fluorescence in a marine microalga.
    Strom D; Ralph PJ; Stauber JL
    Arch Environ Contam Toxicol; 2009 Jan; 56(1):30-8. PubMed ID: 18449466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium.
    Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP
    Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay.
    Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF
    Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata.
    Moreira-Santos M; Soares AM; Ribeiro R
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):164-73. PubMed ID: 15327871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity identification evaluation (TIE) of pore water of contaminated marine sediments collected from Hong Kong waters.
    Kwok YC; Hsieh DP; Wong PK
    Mar Pollut Bull; 2005; 51(8-12):1085-91. PubMed ID: 16023143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence.
    Pérez P; Fernández E; Beiras R
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Qwiklite algal bioluminescence test with marine algal growth rate inhibition bioassays.
    Stauber JL; Binet MT; Bao VW; Boge J; Zhang AQ; Leung KM; Adams MS
    Environ Toxicol; 2008 Oct; 23(5):617-25. PubMed ID: 18528914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species.
    Küster A; Altenburger R
    Chemosphere; 2007 Feb; 67(1):194-201. PubMed ID: 17083966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring test for whole-sediment toxicity assay with -a- benthic marine diatom.
    Araújo CV; Tornero V; Lubián LM; Blasco J; van Bergeijk SA; Cañavate P; Cid A; Franco D; Prado R; Bartual A; López MG; Ribeiro R; Moreira-Santos M; Torreblanca A; Jurado B; Moreno-Garrido I
    Sci Total Environ; 2010 Jan; 408(4):822-8. PubMed ID: 19906403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum.
    Macedo RS; Lombardi AT; Omachi CY; Rörig LR
    Toxicol In Vitro; 2008 Apr; 22(3):716-22. PubMed ID: 18180139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spirotox-Spirostomum ambiguum acute toxicity test-10 years of experience.
    Nałecz-Jawecki G
    Environ Toxicol; 2004 Aug; 19(4):359-64. PubMed ID: 15269908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen decline in biotesting of environmental samples--is there a need for consideration in the acute zebrafish embryo assay?
    Küster E; Altenburger R
    Environ Toxicol; 2008 Dec; 23(6):745-50. PubMed ID: 18348292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.
    Küster A; Pohl K; Altenburger R
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging.
    Schreiber U; Quayle P; Schmidt S; Escher BI; Mueller JF
    Biosens Bioelectron; 2007 May; 22(11):2554-63. PubMed ID: 17118646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of freshwater periphytic diatoms to agricultural herbicides.
    Debenest T; Pinelli E; Coste M; Silvestre J; Mazzella N; Madigou C; Delmas F
    Aquat Toxicol; 2009 Jun; 93(1):11-7. PubMed ID: 19342109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions.
    Laviale M; Prygiel J; Créach A
    Aquat Toxicol; 2010 May; 97(4):334-42. PubMed ID: 20116867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef.
    Shaw M; Negri A; Fabricius K; Mueller JF
    Aquat Toxicol; 2009 Nov; 95(2):108-16. PubMed ID: 19819564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and sorption kinetics of dissolved cadmium and chromium III on tropical freshwater phytoperiphyton in laboratory mesocosm experiments.
    Bere T; Tundisi JG
    Sci Total Environ; 2011 Oct; 409(22):4772-80. PubMed ID: 21862440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated approach to the toxicity assessment of Irish marine sediments: validation of established marine bioassays for the monitoring of Irish marine sediments.
    Macken A; Giltrap M; Foley B; McGovern E; McHugh B; Davoren M
    Environ Int; 2008 Oct; 34(7):1023-32. PubMed ID: 18456331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.