These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 18449466)
1. Development of a toxicity identification evaluation protocol using chlorophyll-a fluorescence in a marine microalga. Strom D; Ralph PJ; Stauber JL Arch Environ Contam Toxicol; 2009 Jan; 56(1):30-8. PubMed ID: 18449466 [TBL] [Abstract][Full Text] [Related]
2. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium. Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677 [TBL] [Abstract][Full Text] [Related]
3. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251 [TBL] [Abstract][Full Text] [Related]
4. An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Moreira-Santos M; Soares AM; Ribeiro R Ecotoxicol Environ Saf; 2004 Oct; 59(2):164-73. PubMed ID: 15327871 [TBL] [Abstract][Full Text] [Related]
5. Toxicity identification evaluation (TIE) of pore water of contaminated marine sediments collected from Hong Kong waters. Kwok YC; Hsieh DP; Wong PK Mar Pollut Bull; 2005; 51(8-12):1085-91. PubMed ID: 16023143 [TBL] [Abstract][Full Text] [Related]
6. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence. Pérez P; Fernández E; Beiras R Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the Qwiklite algal bioluminescence test with marine algal growth rate inhibition bioassays. Stauber JL; Binet MT; Bao VW; Boge J; Zhang AQ; Leung KM; Adams MS Environ Toxicol; 2008 Oct; 23(5):617-25. PubMed ID: 18528914 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Küster A; Altenburger R Chemosphere; 2007 Feb; 67(1):194-201. PubMed ID: 17083966 [TBL] [Abstract][Full Text] [Related]
9. Ring test for whole-sediment toxicity assay with -a- benthic marine diatom. Araújo CV; Tornero V; Lubián LM; Blasco J; van Bergeijk SA; Cañavate P; Cid A; Franco D; Prado R; Bartual A; López MG; Ribeiro R; Moreira-Santos M; Torreblanca A; Jurado B; Moreno-Garrido I Sci Total Environ; 2010 Jan; 408(4):822-8. PubMed ID: 19906403 [TBL] [Abstract][Full Text] [Related]
10. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Macedo RS; Lombardi AT; Omachi CY; Rörig LR Toxicol In Vitro; 2008 Apr; 22(3):716-22. PubMed ID: 18180139 [TBL] [Abstract][Full Text] [Related]
11. Spirotox-Spirostomum ambiguum acute toxicity test-10 years of experience. Nałecz-Jawecki G Environ Toxicol; 2004 Aug; 19(4):359-64. PubMed ID: 15269908 [TBL] [Abstract][Full Text] [Related]
12. Oxygen decline in biotesting of environmental samples--is there a need for consideration in the acute zebrafish embryo assay? Küster E; Altenburger R Environ Toxicol; 2008 Dec; 23(6):745-50. PubMed ID: 18348292 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Küster A; Pohl K; Altenburger R Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220 [TBL] [Abstract][Full Text] [Related]
14. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Schreiber U; Quayle P; Schmidt S; Escher BI; Mueller JF Biosens Bioelectron; 2007 May; 22(11):2554-63. PubMed ID: 17118646 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Debenest T; Pinelli E; Coste M; Silvestre J; Mazzella N; Madigou C; Delmas F Aquat Toxicol; 2009 Jun; 93(1):11-7. PubMed ID: 19342109 [TBL] [Abstract][Full Text] [Related]
16. Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions. Laviale M; Prygiel J; Créach A Aquat Toxicol; 2010 May; 97(4):334-42. PubMed ID: 20116867 [TBL] [Abstract][Full Text] [Related]
17. Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef. Shaw M; Negri A; Fabricius K; Mueller JF Aquat Toxicol; 2009 Nov; 95(2):108-16. PubMed ID: 19819564 [TBL] [Abstract][Full Text] [Related]
18. Toxicity and sorption kinetics of dissolved cadmium and chromium III on tropical freshwater phytoperiphyton in laboratory mesocosm experiments. Bere T; Tundisi JG Sci Total Environ; 2011 Oct; 409(22):4772-80. PubMed ID: 21862440 [TBL] [Abstract][Full Text] [Related]
19. An integrated approach to the toxicity assessment of Irish marine sediments: validation of established marine bioassays for the monitoring of Irish marine sediments. Macken A; Giltrap M; Foley B; McGovern E; McHugh B; Davoren M Environ Int; 2008 Oct; 34(7):1023-32. PubMed ID: 18456331 [TBL] [Abstract][Full Text] [Related]
20. Biomarkers in aquatic plants: selection and utility. Brain RA; Cedergreen N Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]