BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18449544)

  • 21. Cherry.
    Song GQ
    Methods Mol Biol; 2015; 1224():133-42. PubMed ID: 25416255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima.
    Hisano H; Kimoto Y; Hayakawa H; Takeichi J; Domae T; Hashimoto R; Abe J; Asano S; Kanazawa A; Shimamoto Y
    Plant Cell Rep; 2004 Jul; 22(12):910-8. PubMed ID: 15042407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.
    Paul A; Bakshi S; Sahoo DP; Kalita MC; Sahoo L
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1871-95. PubMed ID: 22434351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.).
    Jiang L; Maoka T; Komori S; Fukamachi H; Kato H; Ogawa K
    Shi Yan Sheng Wu Xue Bao; 2004 Jun; 37(3):189-98. PubMed ID: 15323420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient Agrobacterium-mediated transformation of strawberry cv. Camarosa by a dual plasmid system.
    Haddadi F; Aziz MA; Abdullah SN; Tan SG; Kamaladini H
    Molecules; 2015 Feb; 20(3):3647-66. PubMed ID: 25711423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agrobacterium tumefaciens-mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus.
    Verma P; Mathur AK
    Biotechnol Lett; 2011 May; 33(5):1053-60. PubMed ID: 21207108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transgenic grasspea (Lathyrus sativus L.): factors influencing agrobacterium-mediated transformation and regeneration.
    Barik DP; Mohapatra U; Chand PK
    Plant Cell Rep; 2005 Nov; 24(9):523-31. PubMed ID: 15948005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.).
    Egnin M; Mora A; Prakash CS
    In Vitro Cell Dev Biol Plant; 1998; 34(4):310-8. PubMed ID: 11760772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.
    Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ
    Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient transformation protocol for plum (Prunus domestica L.).
    Petri C; Scorza R; Srinivasan C
    Methods Mol Biol; 2012; 847():191-9. PubMed ID: 22351009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Factors influencing agrobacterium-mediated transformation of maize elite inbred lines].
    Huang XQ; Wei ZM
    Shi Yan Sheng Wu Xue Bao; 2004 Oct; 37(5):398-408. PubMed ID: 15636368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves.
    Burgos L; Alburquerque N
    Plant Cell Rep; 2003 Aug; 21(12):1167-74. PubMed ID: 12789497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.
    Yevtushenko DP; Misra S
    Plant Cell Rep; 2010 Mar; 29(3):211-21. PubMed ID: 20087597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strawberry (Fragaria x ananassa).
    Mezzetti B; Costantini E
    Methods Mol Biol; 2006; 344():287-95. PubMed ID: 17033071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus.
    Choi PS; Kim YD; Choi KM; Chung HJ; Choi DW; Liu JR
    Plant Cell Rep; 2004 Jun; 22(11):828-31. PubMed ID: 14963692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agrobacterium-Mediated Transformation of Leaf Base Segments.
    Gasparis S
    Methods Mol Biol; 2017; 1536():95-111. PubMed ID: 28132145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable transformation of Mesembryanthemum crystallinum (L.) with Agrobacterium rhizogenes harboring the green fluorescent protein targeted to the endoplasmic reticulum.
    Konieczny R; Obert B; Bleho J; Novák O; Heym C; Tuleja M; Müller J; Strnad M; Menzel D; Samaj J
    J Plant Physiol; 2011 May; 168(7):722-9. PubMed ID: 21195506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic transformation of carnation (Dianthus caryophylus L.).
    Nontaswatsri C; Fukai S
    Methods Mol Biol; 2010; 589():87-96. PubMed ID: 20099093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence.
    Sandal I; Saini U; Lacroix B; Bhattacharya A; Ahuja PS; Citovsky V
    Plant Cell Rep; 2007 Feb; 26(2):169-76. PubMed ID: 16972098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots.
    Sriskandarajah S; Frello S; Jørgensen K; Serek M
    Plant Cell Rep; 2004 Aug; 23(1-2):59-63. PubMed ID: 15114492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.