BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18449544)

  • 41. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta.
    Gupta V; Ur Rahman L
    Protoplasma; 2015 Jul; 252(4):1061-70. PubMed ID: 25504508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64.
    Sahoo RK; Tuteja N
    GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple and rapid protocol for the genetic transformation of
    Matheka J; Tripathi JN; Merga I; Gebre E; Tripathi L
    Plant Methods; 2019; 15():130. PubMed ID: 31719836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient and genotype-independent Agrobacterium--mediated tomato transformation.
    Park SH; Morris JL; Park JE; Hirschi KD; Smith RH
    J Plant Physiol; 2003 Oct; 160(10):1253-7. PubMed ID: 14610894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens].
    Radchuk VV; Klocke E; Radchuk RI; Neumann M; Blume YaB
    Genetika; 2000 Jul; 36(7):932-41. PubMed ID: 10994497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation.
    Baranski R; Klocke E; Schumann G
    Plant Cell Rep; 2006 Mar; 25(3):190-7. PubMed ID: 16247612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens.
    Hu ZH; Chen JQ; Wu GT; Jin W; Lang CX; Huang RZ; Wang FL; Liu ZH; Chen XY
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):149-59. PubMed ID: 15840933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blueberry (Vaccinium corymbosum L.).
    Song GQ; Sink KC
    Methods Mol Biol; 2006; 344():263-72. PubMed ID: 17033069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.
    Dutt M; Grosser JW
    Plant Cell Rep; 2010 Nov; 29(11):1251-60. PubMed ID: 20711728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells.
    Zottini M; Barizza E; Costa A; Formentin E; Ruberti C; Carimi F; Lo Schiavo F
    Plant Cell Rep; 2008 May; 27(5):845-53. PubMed ID: 18256839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peach (Prunus persica L.).
    Sabbadini S; Pandolfini T; Girolomini L; Molesini B; Navacchi O
    Methods Mol Biol; 2015; 1224():205-15. PubMed ID: 25416260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis.
    Soliman HI; Gabr M; Abdallah NA
    GM Crops; 2010; 1(1):40-51. PubMed ID: 21912211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh.
    Wang Y; Pijut PM
    Tree Physiol; 2013 Aug; 33(8):855-65. PubMed ID: 23956129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail).
    Nandakumar R; Chen L; Rogers SM
    Plant Cell Rep; 2005 Mar; 23(10-11):744-50. PubMed ID: 15538575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis (Chao et Schih) Hsiao transformed by Agrobacterium rhizogenes].
    Zhou YQ; Niu JY; Hao RW; Lin X; Jia JF; Hao JG; Lu LD
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2007 Aug; 40(4):223-31. PubMed ID: 17966459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
    Corredoira E; Valladares S; Allona I; Aragoncillo C; Vieitez AM; Ballester A
    Tree Physiol; 2012 Nov; 32(11):1389-402. PubMed ID: 23086811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens L. via Agrobacterium-mediated transformation.
    Guan ZQ; Chai TY; Zhang YX; Xu J; Wei W; Han L; Cong L
    Mol Biotechnol; 2008 Sep; 40(1):77-86. PubMed ID: 18427996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [ Cajanus cajan (L) Millsp] using leaf explants.
    Dayal S; Lavanya M; Devi P; Sharma KK
    Plant Cell Rep; 2003 Jul; 21(11):1072-9. PubMed ID: 12836001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting.
    Maximova SN; Dandekar AM; Guiltinan MJ
    Plant Mol Biol; 1998 Jun; 37(3):549-59. PubMed ID: 9617821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.